Что такое крутящий момент двигателя и как его рассчитать?

Особые случаи и другие факты

Формула руки момента

Схема руки момента

Очень полезный частный случай, который часто называют определением крутящего момента в других областях, помимо физики, выглядит следующим образом:

τзнак равно(момент рука)(сила).{\ displaystyle \ tau = ({\ text {момент руки}}) ({\ text {force}}).}

Конструкция «плеча момента» показана на рисунке справа вместе с векторами r и F, упомянутыми выше. Проблема с этим определением заключается в том, что оно дает не направление крутящего момента, а только его величину, и, следовательно, его трудно использовать в трехмерных случаях. Если сила перпендикулярна вектору смещения r , плечо момента будет равно расстоянию до центра, а крутящий момент будет максимальным для данной силы. Уравнение для величины крутящего момента, возникающего от перпендикулярной силы:

τзнак равно(расстояние до центра)(сила).{\ displaystyle \ tau = ({\ text {расстояние до центра}}) ({\ text {force}}).}

Например, если человек прикладывает усилие 10 Н к концу гаечного ключа длиной 0,5 м (или усилие 10 Н точно на 0,5 м от точки закручивания гаечного ключа любой длины), крутящий момент будет 5 Нм — при условии, что человек перемещает ключ, прикладывая силу в плоскости движения и перпендикулярно ключу.

Крутящий момент, вызванный двумя противоположными силами F g и -F g, вызывает изменение углового момента L в направлении этого крутящего момента. Это вызывает прецессию вершины .

Статическое равновесие

Чтобы объект находился в статическом равновесии , не только сумма сил должна быть равна нулю, но и сумма крутящих моментов (моментов) относительно любой точки. Для двумерной ситуации с горизонтальными и вертикальными силами сумма требуемых сил составляет два уравнения: Σ H = 0 и Σ V = 0, а крутящий момент — третье уравнение: Σ τ = 0. То есть для статического решения Для детерминированных задач равновесия в двух измерениях используются три уравнения.

Полезная сила в зависимости от крутящего момента

Когда чистая сила, действующая на систему, равна нулю, крутящий момент, измеренный из любой точки пространства, одинаков. Например, крутящий момент на токоведущей петле в однородном магнитном поле одинаков независимо от вашей точки отсчета. Если результирующая сила не равна нулю и является крутящим моментом, измеренным от , то крутящий момент, измеренный от …
F{\ displaystyle \ mathbf {F}}τ1{\ displaystyle {\ boldsymbol {\ tau}} _ {1}}р1{\ displaystyle \ mathbf {r} _ {1}}р2{\ displaystyle \ mathbf {r} _ {2}}τ2знак равноτ1+(р1-р2)×F{\ displaystyle {\ boldsymbol {\ tau}} _ {2} = {\ boldsymbol {\ tau}} _ {1} + (\ mathbf {r} _ {1} — \ mathbf {r} _ {2}) \ times \ mathbf {F}}

Расчет крутящего момента – формула

Примечание: при расчете стоит учесть коэффициент проскальзывания асинхронного двигателя. Номинальное количество оборотов двигателя не совпадает с реальным. Точное количество оборотов вы сможете найти, зная маркировку, в таблице выше.

Расчет онлайн

Для расчета крутящего момента электродвигателя онлайн введите значение мощности ЭД и реальную угловую скорость (количество оборотов в минуту)

тут будет калькулятор

После расчета крутящего момента, посмотрите схемы подключения асинхронных электродвигателей звездой и треугольником на сайте «Слобожанского завода»

Харьков, Полтавский шлях, 56, тел.: +38 (050) 775-43-34

2017 Слобожанский электромеханический завод. Все права защищены

Мощность двигателя – важнейший его показатель. Как в плане эксплуатации, так и в плане начисления налогов на авто. Крутящий момент нередко путают с мощностью или упускают его из виду в процессе оценки ходовых качеств авто. Многие упрощают автомобиль, считая, что большое количество лошадиных сил – главное преимущество любого мотора. Однако, вращающий момент – более важный показатель. Особенно, если автомобиль не предполагается использовать в качестве спортивного.

Значение крутящего момента

Крутящий момент (также называемый моментом — в основном инженерами) рассчитывается путем умножения силы и расстояния. Единицы измерения крутящего момента в СИ — ньютон-метры или Н * м (даже если эти единицы такие же, как в Джоулях, крутящий момент не является работой или энергией, поэтому должен быть просто ньютон-метром).

В расчетах крутящий момент представлен греческой буквой тау: τ .

Крутящий момент является векторной величиной, то есть имеет направление и величину. Это, честно говоря, одна из самых сложных частей работы с крутящим моментом, потому что он рассчитывается с использованием векторного произведения, что означает, что вы должны применять правило правой руки. В этом случае возьмите правую руку и согните пальцы в направлении вращения, вызванном силой. Большой палец правой руки теперь указывает в направлении вектора крутящего момента. (Иногда это может показаться немного глупым, когда вы держите руку и пантомимизируете, чтобы выяснить результат математического уравнения, но это лучший способ визуализировать направление вектора.)

Формула вектора, которая дает вектор крутящего момента τ является:

Некоторые примеры

Формула момента рычага

Момент, действующий на рычаг

Момент силы, действующей на рычаг, равен

M→=rFsin⁡α⋅e→o{\displaystyle {\vec {M}}=rF\sin \alpha \cdot {\vec {e}}_{o}}

или, если записать момент силы относительно оси,

M∥=rFsin⁡α{\displaystyle M_{\parallel }=rF\sin \alpha },

где α{\displaystyle \alpha } — угол между направлением силы и рычагом. Плечо силы равно rsin⁡α{\displaystyle r\sin \alpha }. Максимальное значение момента достигается при перпендикулярности рычага и силы, то есть при α=π2{\displaystyle \alpha =\pi /2}. При сонаправленности F→{\displaystyle {\vec {F}}} и рычага момент равен нулю.

Статическое равновесие

Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма моментов всех сил вокруг любой точки.

Для двумерного случая с горизонтальными и вертикальными силами требование сводится к тому, чтобы нулевыми были сумма сил в двух измерениях: ΣFhorizontal=,ΣFvertical={\displaystyle \Sigma F_{horizontal}=0,\,\Sigma F_{vertical}=0} и момент силы в третьем измерении: ΣM={\displaystyle \Sigma M=0}.

Движение твёрдого тела

Движение твёрдого тела можно представить как движение конкретной точки и вращения вокруг неё.

Момент импульса относительно точки O твёрдого тела может быть описан через произведение момента инерции и угловой скорости относительно центра масс и линейного движения центра масс.

Lo→=Icω→+M(ro→−rc→),vc→.{\displaystyle {\vec {L_{o}}}=I_{c}\,{\vec {\omega }}+.}

Будем рассматривать вращающиеся движения в системе координат Кёнига, так как описывать движение твёрдого тела в мировой системе координат гораздо сложнее.

Продифференцируем это выражение по времени. И если I{\displaystyle I} — постоянная величина во времени, то

M→=Idω→dt=Iα→,{\displaystyle {\vec {M}}=I{\frac {d{\vec {\omega }}}{dt}}=I{\vec {\alpha }},}

где α→{\displaystyle {\vec {\alpha }}} — угловое ускорение, измеряемое в радианах в секунду за секунду (рад/с2). Пример: вращается однородный диск.

Если тензор инерции меняется со временем, то движение относительно центра масс описывается с помощью динамического уравнения Эйлера:

Mc→=Icdω→dt+w→,Icw→.{\displaystyle {\vec {M_{c}}}=I_{c}{\frac {d{\vec {\omega }}}{dt}}+.}

Динамика вращения

В начале статьи мы записали кинематические характеристики, которые используются для описания движения вращения. В динамике вращения главным уравнением, которое использует эти характеристики, является следующее:

Действие момента M на систему, имеющую момент инерции I, приводит к появлению углового ускорения α.

Данную формулу применяют, для определения угловых частот вращения в технике. Например, зная вращающий момент асинхронного двигателя, который зависит от частоты тока в катушке статора и от величины изменяющегося магнитного поля, а также зная инерционные свойства вращающегося ротора, можно определить, до какой скорости вращения ω раскручивается ротор двигателя за известное время t.

Самые мощные серийные автомобили 2016 года.

Изучая технические характеристики современных автомобилей большинство из нас чаще всего обращают свое внимание на мощность автомобиля(ей), которая выражается, как все уже знают, в лошадиных силах. Традиционно считается, чем больше л.с

в автомобиле, тем он мощнее. К большому сожалению многие из нас забывают, что не менее важен и другой показатель в автомобиле, это его максимальный крутящий момент. На современном авторынке можно встретить (найти) не мало примеров, когда автомобили (их двигатели) имеют просто фантастическое количество лошадиных сил, а выдают при этом не достаточный для мотора крутящий момент. Уважаемые наши читатели, давайте вместе узнаем, какие серийные автомобили в настоящий момент выпускаются для продажи на мировом авторынке с самым большим крутящим моментом двигателя. Поверьте нам, эти суперкары готовы сегодня запросто разорвать нашу стратосферу, если бы они могли передвигаться (летать) по воздуху.

Все современные технологии в автопромышленности развивавшиеся за последние несколько лет, в буквальном смысле слова изменили весь автомобильный рынок в сфере мощных и супер-мощных супекаров. Ведь еще каких-то 5 лет назад подобный список самых мощных автомобилей выглядел бы совсем по иному. Но в сегодняшнюю эпоху быстрого развития турбированных и гибридных двигателей, все стало выглядеть иначе (по другому).

Благодаря внедрению новейших технологий в автопроизводство на первое место по показателям выдвинулся крутящий момент двигателя, отодвинув на второй план такой немаловажный показатель в машине, как лошадиные силы. Причина заключается в турбокомпрессорах устанавливаемых на моторы, где за счет турбонаддува этих компрессоров увиливается мощность самого двигателя, которая позволяет двигателю свободно использовать его максимальный крутящий момент на малых оборотах. Первое,- так сегодня, главным критерием мощности автомобиля является диапазон оборотов самого двигателя, в котором доступна максимальная мощность. Теперь вы сами понимаете, если эта (большая) мощность автомобиля будет доступна в небольшом диапазоне оборотов силового агрегата, то автомобиль не может считаться одним из самых мощных

Второе,- так же важно, чтобы эта максимальная мощность была доступна на малых оборотах двигателя, то есть, чем раньше автомобиль сможет использовать всю мощь своего двигателя, тем для него лучше. 

Давайте вместе рассмотрим автомобили 2016 года выпущенные по всему миру, у которых самый большой крутящий момент двигателя. Сразу хотим заметить, что в недалеком будущем этот список автомобилей безусловно (скорее всего) будет выглядеть иначе, так как все автомобильные компании не стоят на месте и постоянно создают новые и новые автомобили, т.е. новые суперкары. Так что в следующем году этот рейтинг автомобилей с самым большим крутящим моментом двигателя будет в любом случае выглядеть по-другому.

Составление расчетных схем вала в горизонтальной и вертикальной плоскостях

Принципиальная
схема вала – двухопорный вал с различным
расположением относительно опор
закрепленных на нем прямозубых зубчатых
колес под разными углами ,
град, которые находятся в зацеплении с
другими зубчатыми колесами.

При
составлении расчетных схем необходимо
учитывать направление окружных сил на
зубчатых колесах (рис.1). На шестерне
(ведущем зубчатом колесе), закрепленной
на валу, окружная сила Ft
направлена против вращения вала, на
колесе (ведомом зубчатом колесе) – в
сторону вращения вала.

Радиальная
сила Fr
 направлена к оси вала.

Для
удобства составления расчетных схем
силы, действующие в зацеплении, переносятся
на ось вращения вала и проектируются
на две взаимно перпендикулярные плоскости
XOZ
 (горизонтальную) и YOZ
(вертикальную) (рис.1,а
и 1,б).
Направления осей X,
Y

и Z
задаются произвольно, но при рассмотрении
сечений I-I и II-II эти направления сохраняются
постоянными.

Крутящий момент и лошадиная сила

Автолюбители нередко дискутируют друг с другом: чей двигатель мощнее. Но иногда и не представляют при этом, из чего складывается данный параметр. Общепринятый термин «лошадиная сила» был введён изобретателем Джеймсом Уаттом в XVIII веке.  Он придумал его, наблюдая за лошадью, которая была запряжена в поднимающий уголь из шахты механизм. Он рассчитал, что одна лошадь за минуту может поднять 150 кг угля на высоту 30-ти метров. Одна лошадиная сила эквивалентна 735,5 Ватт, или 1 кВт равен 1,36 л.с.

В первую очередь, мощность любого мотора оценивают в лошадиных силах, и лишь потом вспоминают о крутящем моменте. Но эта тяговая характеристика тоже даёт представление о конкретных тягово-динамических возможностях автомобиля. Крутящий момент является показателем работы силового агрегата, а мощность – основным параметром выполнения этой работы. Эти показатели тесно связаны друг с другом. Чем больше производится двигателем лошадиных сил, тем больше и потенциал крутящего момента. Реализуется этот потенциал в реальных условиях через трансмиссию и полуоси машины. Соединение этих элементов вместе и определяет, как именно мощность может переходить в крутящий момент.

Простейший пример – сравнение трактора с гоночной машиной. У гоночного болида лошадиных сил много, но крутящий момент требуется для увеличения скорости через редуктор. Чтобы такая машина двигалась вперёд, надо совсем немного работы, потому что основная часть мощности используется для развития скорости.

Что касается трактора, то у него может быть мотор с таким же рабочим объёмом, который вырабатывает столько же лошадиных сил. Но мощность в этом случае используется не для развития скорости, а для выработки тяги (См. тяговый класс). Для этого она пропускается через многоступенчатую трансмиссию. Поэтому трактор не развивает высоких скоростей, зато он может буксировать большие грузы, пахать и культивировать землю, и т.д.

В двигателях внутреннего сгорания сила передаётся от газов сгорающего топлива поршню, от поршня – передаётся на кривошипный механизм, и далее на коленчатый вал. А коленвал, через трансмиссию и приводы, раскручивает колёса.

Естественно, крутящий момент двигателя не постоянен. Он сильней, когда на плечо действует бо́льшая сила, и слабей – когда сила слабнет или перестаёт действовать. То есть, когда водитель давит на педаль газа, то сила, воздействующая на плечо, повышается, и, соответственно увеличивается крутящий момент двигателя.

Мощность обеспечивает преодоление всевозможных сил, которые мешают двигаться автомобилю. Это и сила трения в двигателе, трансмиссии и в приводах автомобиля, и аэродинамические силы, и силы качения колёс и т.д. Чем больше мощность, тем большее сопротивление сил машина сможет преодолеть и развить большую скорость. Однако мощность – сила не постоянная, а зависящая от оборотов мотора. На холостом ходу мощность одна, а на максимальных оборотах – совершенно другая. Многими автопроизводителями указывается, при каких оборотах достигается максимально возможная мощность автомобиля.

Необходимо учитывать, что максимальная мощность не развивается сразу. Автомобиль стартует с места практически при минимальных оборотах (немного выше холостого хода), и для того, чтобы отмобилизировать полную мощность, требуется время. Тут и вступает в дело крутящий момент двигателя. Именно от него и будет зависеть, за какой отрезок времени автомашина достигнет своей максимальной мощности – то есть, динамика её разгона.

Зачастую водитель сталкивается с такими ситуациями, когда требуется придать автомобилю значительное ускорение для выполнения необходимого маневра. Прижимая педаль акселератора в пол, он чувствует, что автомобиль ускоряется слабо. Для быстрого ускорения нужен мощный крутящий момент. Именно он и характеризует приёмистость автомобиля.

Основную силу в двигателе внутреннего сгорания вырабатывает камера сгорания, в которой воспламеняется топливно-воздушная смесь. Она приводит в действие кривошипно-шатунный механизм, а через него – коленчатый вал. Рычагом является длина кривошипа, то есть, если длина будет больше, то и крутящий момент тоже увеличится.

Однако увеличивать кривошипный рычаг до бесконечности невозможно. Ведь тогда придётся увеличивать рабочий ход поршня, а вместе с ним и размеры двигателя. При этом уменьшатся и обороты двигателя. Двигатели с большим рычагом кривошипного механизма можно применить только лишь в крупномерных плавательных средствах. А в легковых автомашинах с небольшими размерами коленчатого вала не поэкспериментируешь.

Направление действия величины M¯

Выше было показано, что вращающий момент — это векторная характеристика для данной системы. Куда направлен этот вектор? Ответить на этот вопрос не представляет особого труда, если вспомнить, что результатом произведения двух векторов является третий вектор, который лежит на оси, перпендикулярной плоскости расположения исходных векторов.

Остается решить, будет ли направлен момент силы вверх или вниз (на читателя или от него) относительно упомянутой плоскости. Определить это можно или по правилу буравчика, или с помощью правила правой руки. Приведем оба правила:

  • Правило правой руки. Если расположить правую кисть таким образом, чтобы четыре ее пальца двигались от начала вектора r¯ к его концу, а затем от начала вектора F¯ к его концу, то большой палец, оттопыренный, укажет на направление момента M¯.
  • Правило буравчика. Если направление вращения воображаемого буравчика совпадает с направлением вращательного движения системы, то поступательное движение буравчика укажет на направление вектора M¯. Напомним, что он вращается только по часовой стрелке.

Оба правила являются равноправными, поэтому каждый может использовать то, которое является для него более удобным.

При решении практических задач разное направление вращающего момента (вверх — вниз, влево — вправо) учитывается с помощью знаков «+» или «-«. Следует запомнить, что за положительное направление момента M¯ принято считать такое, которое приводит к вращению системы против часовой стрелки. Соответственно, если некоторая сила приводит к вращению системы по ходу стрелки часов, то создаваемый ее момент будет иметь отрицательную величину.

Различные типы двигателей

Как мы с вами уяснили, чем на меньших оборотах наступает максимальный крутящий момент — тем лучше, но какие моторы могут под это подходить? И вообще у каких «большой запас» этого момента? Ведь обычный бензиновый четырехцилиндровый атмосферник, выходит на свой номинал примерно в 5000 – 6000 оборотов.

НО есть моторы, которые выдают достаточно большие моменты, причем наступают они при достаточно низких оборотах. Это многоцилиндровые моторы, а также  «V» – образные типы, начиная с V6 – V8. Турбированные агрегаты, имеют большой запас момента, даже при относительно малых объемах.

Однако абсолютным рекордсменом являются дизельные варианты, особенно те которые устанавливались на трактора, ведь здесь важна тяга именно на низах (скорость на трассах абсолютно не нужна). Такие варианты выходят на номинал, уже при 1500 оборотов, просто представьте! Такие агрегаты называют «тяговитыми» из-за быстрого набора крутящего момента.

Условно моторы можно разделить на четыре лагеря:

  • Это обычные атмосферники, 4 цилиндра.
  • Многоцилиндровые агрегаты, от 6 до 12 «горшков», сюда же можно записать и V – образные.
  • Это турбированные моторы
  • Дизельные агрегаты

Про «многоцилиндровые» (второй тип) сейчас особо заострять не буду, здесь понятно, что чем больше цилиндров – тем больше мощность и соответственно крутящий момент. Минус только в том что эти агрегаты тяжелые, прожорливые, и очень большие по размерам.

А вот остальные три типа стоит сравнить для полного понимания, возьмем три мотора от нового KIA SPORTAGE, смотрим таблицу.

Объем, двигателя Обороты в минуту

(об/мин)

Максимальная мощность

(в л.с.)

Крутящий момент

(в Нм)

Бензиновый, 4 – цилиндровый рядный 2,0 литра 6200 150
  4000 192
Турбированный, 4 —  цилиндровый рядный 1,6 литра 5500 177
  2000 — 4500 265
Дизельный, 4 —  цилиндровый рядный 2,0 литра 4000 185
  1750 — 2750 400

Бензиновая атмосферная «четверка», развивает максимальную мощность только при 6200 оборотах в минуту, зато максимальный крутящий момент наступает уже при 4000 оборотов. Турбо вариант, 177 л.с при 5500 оборотов, но момент здесь намного выше 265 в диапазоне от 2000 до 4500 об. Но рекордсменом по л.с. и крутящему моменту идет дизель, 185 л.с. при 4000 об/мин, и крутящий момент 400! (просто вдумайтесь) в интервале 1750 – 2750 об/мин.

Как видите бензиновые агрегаты проигрывают дизелю в моменте (обычный атмосферник примерно в 2 с небольшим раза). Причем максимальной отдачи можно достичь только при 4000 об/мин. Зато бензиновый мотор легко крутится до 6200, а то и больше 7000 – 8500 об/мин, что позволит развить ему большую мощность. Дизель же не может похвастаться высокими оборотами, максимальная полка зачастую всего 4000 — 5000 об/мин, поэтому они могут проигрывать в максимальной мощности своим бензиновым собратьям.

НА старте бензиновый мотор выиграет у дизельного агрегата! Почему? ДА все просто, бензиновый агрегат можно крутить до 6500, а в редких случаях до 8000 об/мин, не переключая передачи. А вот дизель достигнет пик своего момента максимально быстро (уже при 1750 об/мин) и вам нужно будет тратить время на переключение, далее еще одна передача и т.д. Конечно эта ситуация справедлива для механики, на многих современных автоматах переключения происходят максимально быстро. ДА и для того чтобы тягаться с дизелем бензину, всегда нужно будет держать повышенные обороты, чтобы сравняться в мощности. Например, при 90 км/ч на трассе, чтобы ускориться на бензиновом агрегате, нужно скинуть передачу пониже (увеличивая обороты — увеличиваем мощность), а вот дизелю делать этого не нужно!

Как увеличить момент?

Если нужно улучшить динамику автомобиля, можно применить несколько способов. Это увеличение объема, установка наддува, а также изменения газодинамики.

Рабочий объем мотора можно увеличить заменой коленчатого вала с большим эксцентриком либо при помощи расточки цилиндров. Замена коленвала зачастую требует определенных затрат, и нужную модель очень трудно подобрать.

Гораздо выгоднее расточить цилиндры. Стенки вполне допускают такое мероприятие. При этом можно даже обойтись серийными поршнями. Однако не факт, что такая замена обойдется дешевле, нежели замена коленчатого вала.

Дополнительный наддув можно применить лишь там, где уже стоит турбина. Этот способ требует дополнительных изменений. Изменить наддув можно поднятием планки для стравливания давления. Также вместе с этим придется дополнительно усовершенствовать камеры сгорания, менять систему охлаждения, радиаторы, воздухозаборники.

Можно обойтись и менее радикальным чип-тюнингом. Так, при помощи перепрошивки электронного блока вполне реально легко и просто изменить множество важных параметров и характеристик автомобиля.

Как рассчитывается мощность двигателя?

Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.

N_дв=M∙ω=2∙π∙M∙n_дв

где:

N_дв – мощность двигателя, кВт;

M – крутящий момент, Нм;

ω – угловая скорость вращения коленчатого вала, рад/сек;

π – математическая постоянная, равная 3,14;

n_дв – частота вращения двигателя, мин-1.

Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.

N_дв=(V_дв∙P_эфф∙n_дв)/120

где:

V_дв – объем двигателя, см3;

P_эфф – эффективное давление в цилиндрах, МПа;

120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).

Для расчета лошадиных сил киловатты умножаем на 0,74.

N_(дв л.с.)=N_дв∙0,74

где:

N_дв л.с. – мощность двигателя в лошадиных силах, л. с.

Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.

На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.

Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.

Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector