Принцип работы трехфазного генератора
Содержание:
Схема подключения
Сегодня выпускают различные вариации асинхронного двигателя. Он может быть однофазным или иметь три фазы для подключения. В нем может быть предусмотрено несколько обмоток или выполнена модернизация конструкции ротора. Однако в любом случае схемы подключения устройства остаются неизменными.
Среди распространенных схем можно выделить следующие.
«Звезда». В этом случае необходимо взять концы обмоток статора и подключить их в одной точке. Способ подходит преимущественно для трехфазных генераторов, которые необходимо подсоединить к трехфазной линии по большему напряжению.
Каждый генератор подключается к системе посредством определенной схемы, которая определяет способ выработки электроэнергии. Любой из этих способов подразумевает рациональное размещение проводов обмоток неподвижного элемента между полюсами его сердечника, только при этом подключение этих проводов осуществляется по-разному.
Каким компаниям доверять?
Выпуском электрических генераторов занимаются не только известные компании, но и те, что появились совсем недавно. В имеющемся ассортименте легко запутаться без некоторой подготовки.
Стационарная установка
Отечественному покупателю хорошо известны следующие несколько названий:
- «Вепрь». Пользуется наибольшим спросом среди российских компаний, занимающихся этим направлением. Мощность находится в диапазоне от 2 до 230 кВт. Генераторы подходят как для бытового, так и для промышленного применения. WAY — модели, подходящие для эксплуатации в домашних условиях.
- SDMO. Ещё один производитель, модели которого встречаются в большом количестве. Агрегаты и в этом случае с двигателями, работающими на 1 либо на 3 фазах. Мощность, внешнее исполнение — главное отличие между разными моделями. Корпус с шумопоглощением отлично подходит тем, кто использует именно бытовые разновидности генераторов. Воздушное охлаждение, мощность до 10 кВа — характеристики отдельного класса устройств. Они часто снабжаются дополнительными выходами для переменного либо постоянного тока. Электростартер дополняет стационарные разновидности моделей. Они устанавливаются на раме или внутри контейнеров с функцией шумоизоляции.
- Geko. Производитель с широкой линейкой продукции для любых условий. Создаёт не только бытовые модели, но и варианты с более узкой специализацией. Внутри моделей устанавливают одно- или трёхфазный двигатель в зависимости от того, какие цели преследует потребитель. Запуск — ручной либо его заменяет электростартер. У некоторых моделей есть кожухи, поглощающие шумы. Встроенная панель автоматического запуска тоже становится неплохим дополнением к стандартным электростанциям.
Устройство простейшего генератора
Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами. Для снятия напряжения с вращающейся рамки используют токосъемные кольца.
В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.
Устройство автомобильного генератора переменного тока
Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой). Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора. Реле регулятор может встраиваться в корпус, а может находиться отдельно.
Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.
Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.
Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.
Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).
От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.
Принцип работы автомобильного генератора
Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.
Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока. На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.
В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.
От поворота ключа до выдачи напряжения…
Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.
Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.
Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.
Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.
На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.
Способы возбуждения синхронных генераторов
Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле.
До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ).
Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 .
В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.
В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного
тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.
В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда
энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий
трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.
На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.
Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.
Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.
Теория генератора переменного тока
В прямоугольном контуре вращается постоянный магнит.
Принцип действия генератора основан на законе электромагнитной индукции — индуцирование электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле. Или наоборот, прямоугольный контур вращается в однородном неподвижном магнитном поле.
Допустим, что однородное магнитное поле, создаваемое постоянным магнитом, вращается вокруг своей оси в проводящем контуре (проволочной рамке) с равномерной угловой скоростью ω{\displaystyle \omega }. Две равные порознь вертикальные стороны контура (см. рисунок) являются активными, так как их пересекают магнитные линии магнитного поля. Две равные порознь горизонтальные стороны контура — не активные, так как магнитные линии магнитного поля их не пересекают, магнитные линии скользят вдоль горизонтальных сторон, электродвижущая сила в них не образуется.
В каждой из активных сторон контура индуктируется электродвижущая сила, величина которой определяется по формуле:
e1=Blvsinωt{\displaystyle e_{1}=Blv\sin \omega t} и e2=Blvsin(ωt+{\displaystyle e_{2}=Blv\sin(\omega t+}π{\displaystyle \pi })=−Blvsinωt{\displaystyle )=-Blv\sin \omega t},
где
e1{\displaystyle e_{1}} и e2{\displaystyle e_{2}} — мгновенные значения электродвижущих сил, индуктированных в активных сторонах контура, в вольтах;
B{\displaystyle B} — магнитная индукция магнитного поля в вольт-секундах на квадратный метр (Тл, Тесла);
l{\displaystyle l} — длина каждой из активных сторон контура в метрах;
v{\displaystyle v} — линейная скорость, с которой вращаются активные стороны контура, в метрах в секунду;
t{\displaystyle t} — время в секундах;
ωt{\displaystyle \omega t} и ωt+{\displaystyle \omega t+}π{\displaystyle \pi } — углы, под которыми магнитные линии пересекают активные стороны контура.
Так как электродвижущие силы, индуктированные в активных сторонах контура, действуют согласно друг с другом, то результирующая электродвижущая сила, индуктируемая в контуре,
будет равна e=2Blvsinωt{\displaystyle e=2Blv\sin \omega t}, то есть индуктированная электродвижущая сила в контуре изменяется по синусоидальному закону.
Если в контуре вращается однородное магнитное поле с равномерной угловой скоростью, то в нём индуктируется синусоидальная электродвижущая сила.
Можно преобразовать формулу e=2Blvsinωt{\displaystyle e=2Blv\sin \omega t}, выразив её через максимальный магнитный поток Φm{\displaystyle \Phi _{m}}, пронизывающий контур.
Относительная линейная скорость v{\displaystyle v} активных сторон равна произведению радиуса вращения α2{\displaystyle {\frac {\alpha }{2}}} на угловую скорость ω{\displaystyle \omega }, то есть v=α2ω{\displaystyle v={\frac {\alpha }{2}}\omega }.
Тогда получим e=2Blα2ωsinωt{\displaystyle e=2Bl{\frac {\alpha }{2}}\omega \sin \omega t},
где
ωΦm{\displaystyle \omega \Phi _{m}} — амплитуда синусоидальной электродвижущей силы;
ωt{\displaystyle \omega t} — фаза синусоидальной электродвижущей силы;
ω{\displaystyle \omega } — угловая скорость синусоидальной электродвижущей силы, в данном случае равная угловой скорости вращения магнита в контуре.
С учётом того, что контур состоит из многих витков провода, электродвижущая сила пропорциональна количеству витков w{\displaystyle w} и формула будет выглядеть так: e=w2Blα2ωsinωt{\displaystyle e=w2Bl{\frac {\alpha }{2}}\omega \sin \omega t}.
Если ввести в формулу максимальный магнитный поток, тогда e=wΦmsinωt{\displaystyle e=w\Phi _{m}\sin \omega t}.
Достоинства и недостатки
Итак, каковы преимущества МГД генераторов:
Это огромная мощность при небольших размерах установки (доходит до нескольких мегаватт).
Полное отсутствие вращающихся деталей, а, значит, нет потерь на трение.
МГД генератор – объемная установка. Почему? Во-первых, объемные процессы, которые протекают в генераторе, уменьшают наличие нежелательных процессов поверхностного типа, к примеру, снижено загрязнение, минимум токов утечек и так далее. Во-вторых, больше объем – больше мощность машины.
Из предыдущего следует, что чем больше МГД генератор, тем выше коэффициент полезного действия, тем меньше вредных выбросов из установки.
В свое время был достигнут достаточно серьезный показатель экономии и эффективности, когда магнитогидродинамический агрегат соединили с котельной. Эффект оказался тройным. После сжигания газа или другого энергоносителя в топке котла, отработанные газы (они ионизированные) поступали в генератор, который вырабатывал электрический ток, далее газы поступали на парогенератор ТЭЦ, дополнительно нагревая воду или пар для отопления. Необходимо отметить, что в те времена коэффициент полезного действия такой комбинации составлял 65%, и это по сравнению с традиционным КПД старых котельных 50%.
И, конечно, магнитогидродинамические генераторы являются установками передвижными
А это, как показывает жизнь, иногда очень важно.
Теперь о недостатках:
- В первую очередь необходимо отметить, что установка МГД генератора должна изготавливаться из дорогих жаропрочных сплавов. Потому что температура внутри генератора очень высокая, а скорость движения внутри него горячих газов составляет 2000 м/с.
- МГД генератор может вырабатывать только постоянный ток, поэтому к нему придется добавлять эффективный инвертор.
- Существует два вида генераторов: с открытым циклом и открытым. В обоих из них протекают процессы с химически активными веществами.
- Электроды, которые и вырабатывают электрический ток внутри МГД генератора, расположен в так называемом МГД канале. Так вот в канале всегда присутствует температура, определяемая тысячами градусов. Поэтому электроды быстро выходят из строя.
- Всем известно, что мощность установки прямопропорциональна квадрату индукции магнитного поля. Поэтому для промышленных образцов требуются очень большие магнитные системы. Они в несколько тысяч раз мощнее, чем лабораторные образцы.
- Если температура газа, проходящего через МГД генератор, падает ниже +2000С, то в нем практически не остается свободных электронов. Поэтому такой газ использовать для получения электрического тока нет смысла.
- По непонятным причинам в основном разрабатывались МГД генераторы, работающие на плазме (ионизированном газе). А вот использование морской воды не применялось, хотя именно морская вода и является отличным электролитом. В ней заключено огромное количество энергии, которую можно было бы использовать. Видно пока не нашлись те технологии, которые смогли бы эту энергию получить через МГД генератор.
Из всего вышесказанного можно сделать вывод, что проблем с устройством и использованием МГД генераторов много. И их придется еще преодолевать. Правда, некоторые позиции умельцам удается обходить, используя всевозможные хитроумные идеи. Но это опять-таки на уровне опытных образцов.
История создания
Точно сказать, какие специалисты изобрели генератор электричества, нельзя — работу над ним вели многие инженеры и электротехники в течение десятков лет. Работа над такой техникой продолжается даже и в XXI веке, когда, казалось бы, ничего существенного прибавить уже нельзя. Решающим шагом к созданию генератора стало открытие взаимодействия электрического поля и магнитной стрелки в 1820 году. Постепенно удалось обнаружить, что электрический ток получается только в подвижном магнитном поле либо при движении в нем проводника. Честь такого открытия делят Аньош Йедлик (Австрия, 1827) и Майкл Фарадей (Англия, 1831).
Хотя первым был венгерский ученый, куда большую известность получили усилия его британского коллеги. Именно он детально и всесторонне исследовал электромагнитную индукцию, а не просто постарался создать конкретный механизм. Кроме того, Йедлик от прототипов смог перейти к полноценной динамо-машине лишь в 1850-е годы. А вот Майкл Фарадей создал генератор электроэнергии (хотя еще несовершенный) еще в 1831-м. Динамо-машины оказались исторически первым типом, но из-за размеров и сложности коммутации сошли со сцены.
Но архаичное крепостное хозяйство не позволило воспользоваться перспективными разработками, и вскоре приоритет безвозвратно ушел к промышленно развитым государствам. Вплоть до 1851 года все генераторы делались только с постоянными магнитами, в последующие 16 лет повысить мощность удавалось за счет простых электромагнитов. В 1866-1867 годах сразу несколько разработчиков представили электрические машины на самовозбуждающихся магнитах.
Генератор бельгийско-французского изобретателя Зеноба Грамма, построенный в 1870 году, впервые начал применяться широко в промышленных целях. Как только появился дизельный двигатель, неустановленный разработчик придумал, как использовать его в качестве генераторного привода. Уже в 1920-е годы дизель-генераторы начали активно применяться в промышленности. Исследования физиков в 1940-е годы позволили создать магнитогидродинамические генераторы. Но такие системы могут применяться исключительно на крупных электростанциях, перспективы их бытового применения отсутствуют.
Виды асинхронных машин
Различные виды АГ могут отличаться по следующим рабочим характеристикам:
- Типом вращающейся части генерирующего устройства – его ротора;
- Количеством выходных или статорных обмоток в генераторе (числом рабочих фаз);
- Схемой включения катушек трехфазного генератора – треугольником или звездой, а также способом их размещения и укладки на полюсах статора (фото ниже);
Размещение обмоток статора
Наличием или отсутствием отдельной обмотки возбуждения.
В соответствие с первым из этих признаков, все известные разновидности АГ оснащаются короткозамкнутым или фазным ротором. Первый из них изготавливается в виде цельной конструкции цилиндрической формы, состоящей из отдельных штырей с двумя замыкающими их кольцами (типа «беличье колесо»).
Фазный ротор, в отличие от своего короткозамкнутого аналога, имеет индуктивную обмотку из изолированного провода, обеспечивающую создание динамического электромагнитного поля. Из-за особенностей своей конструкции такой ротор имеет высокую стоимость изготовления и нуждается в специализированном обслуживании.
Выходные обмотки статора, как и весь генератор, могут быть однофазными или трехфазными, что определяется непосредственным назначением данного агрегата (когда требуется источник напряжения 220 или 380 Вольт). Относительно первого из этих исполнений всё достаточно ясно, а вот у трехфазной модификации АГ имеется ещё одна особенность, касающаяся электрической схемы включения обмоток.
Известно, что для формирования любой трехфазной питающей сети в электротехнике применяются два вида включения обмоток, смещённых в векторном представлении одна относительно другой на 120 градусов. Это:
Включение звездой, когда начала катушек соединены в одной точке, где формируется нулевая жила, а их концы расходятся по трём линиям питания (вместе с нулевым проводом их получается четыре, как это указано на фото ниже);
4-х проводное включение по схеме «звезда»
Подсоединение по схеме «треугольник», при котором конец одной катушки соединяется с началом второй и так далее до полного замыкания цепочки. Второй вариант включения используется в 3-х проводных линиях энергоснабжения, поскольку в этой схеме отсутствует нулевой провод.
В каждом изделии АГ подключение по той или иной схеме реализуется вполне конкретными способами, позволяющими поместить провода всех обмоток статора между полюсами его сердечника. Они наматываются таким образом, чтобы каждая секция фазных катушек A, B и C была сдвинута по окружности одна относительно другой точно на 120 градусов.
В заключение обзора генераторных устройств обратим внимание на возможность изготовления АГ из асинхронного двигателя. Подобная перспектива появляется, благодаря известному принципу обратимости действия электрических машин, согласно которому направление преобразования энергии может выбираться произвольно
Классификация
Различают два вида генераторов постоянного тока:
- с независимым возбуждением обмоток;
- с самовозбуждением.
Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:
- устройства с параллельным возбуждением;
- альтернаторы с последовательным возбуждением;
- устройства смешанного типа (компудные генераторы).
Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.
С параллельным возбуждением
Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.
Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.
Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.
Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.
Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.
С независимым возбуждением
В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.
На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.
Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.
С последовательным возбуждением
Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.
В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.
Со смешанным возбуждением
Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.
Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.
Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.