Принцип работы турбины на дизельном двигателе

Двигатель внутреннего сгорания – атмосферный

Принцип давно уже изучен и я бы сказал «избит»! Большинство моторов имеют четырехтактный цикл, конечно есть и двухтактные, но они на автомобилях применяются редко. Как мы можем знать, работа основана на компрессии, вот почему это такой важный показатель, и он должен быть всегда в норме.

ИТАК (4 такта):

1 такт – поршень идет вниз, открываются впускные клапана и в цилиндры поступает воздушно-топливная смесь.

2 такт —  сжатие – поршень идет «максимально» вверх, сжимая смесь.

3 такт – воспламенение – сжатая смесь воспламеняется от свечей зажигания, происходит мини взрыв, который толкает поршень вниз.

4 такт  — выход отработанных газов – открываются другие клапана, которые выводят эти газы, выталкивает их поршень, который также идет наверх.

Эта «классика» работает вот уже много лет, с момента основания двигателя внутреннего сгорания. Сразу хочется отметить мощность у такого классического строения – повышается за счет увеличения объема цилиндров. ТО есть двигатель объемом в 1,4 литра будет заведомо слабее, чем вариант в 2,0 литра. Но относительно недавно (если брать историю моторостроения), появились первые турбины, которые устанавливаются на этот классический двигатель, и меняют расклад сил.

Принцип работы турбины на дизельном двигателе и ее устройство

Гениальная идея использования выхлопных газов для разгона ротора позволила создать турбированный дизельный двигатель внутреннего сгорания и увеличить его мощность на 40–50%. Это притом, что во время работы в обычном режиме выброс газов сопровождается снижением коэффициента полезного действия в пределах 30 — 40%.

Принцип работы турбины дизельного двигателя основан на увеличении количества воздуха, смешиваемого с топливом и поступающего в камеру сгорания. За один и тот же период времени и при равных объемах цилиндров, двигатель с турбонаддувом может сжечь большее количество топлива, чем движок, не оснащенный таким устройством. А значит, его мощность и КПД в единицу времени значительно возрастет.

Рассмотрим устройство турбины дизельного двигателя, как работает, и каким образом достигаются такие показатели.

Классический вариант

Как уже отмечено, в электростанции на дровах используется несколько технологий для получения электричества. Классической среди них является энергия пара, или попросту паровой двигатель.

Здесь все просто – дрова или любое другое топливо сгорая, разогревает воду, в результате чего она переходит в газообразное состояние – пар.

Полученный пар подается на турбину генераторной установки, и за счет вращения генератор вырабатывает электроэнергию.

Поскольку паровой двигатель и генераторная установка соединены в единый закрытый контур, то после прохождения турбины пар охлаждается, снова подается в котел, и весь процесс повторяется.

Такая схема электростанции – одна из самых простых, но у нее имеется ряд существенных недостатков, одним из которых является взрывоопасность.

После перехода воды в газообразное состояние давление в контуре значительно повышается, и если его не регулировать, то высока вероятность порыва трубопроводов.

И хоть в современных системах применяются целый набор клапанов, регулирующих давление, но все же работа парового двигателя требуется постоянного контроля.

К тому же обычная вода, используемая в этом двигателе, может стать причиной образования накипи на стенках труб, из-за чего понижается КПД станции (накипь ухудшает теплообмен и снижает пропускную способность труб).

Но сейчас эта проблема решается использованием дистиллированной воды, жидкостей, очищенных примесей, выпадающих в осадок, или же специальных газов.

Но с другой стороны эта электростанция может выполнять еще одну функцию – обогревать помещение.

Здесь все просто – после выполнения своей функции (вращения турбины) пар необходимо охладить, чтобы он снова перешел в жидкое состояние, для чего нужна система охлаждения или попросту – радиатора.

И если разместить этот радиатор в помещении, то в итоге от такой станции получим не только электроэнергию, но еще и тепло.

Применение

Нашел себе применение турбовальный двигатель и на земле. Правильнее даже говорить, что именно на земле он изначально и использовался, и только после появления авиации, как таковой, «переселился» на небо. Его можно встретить и на транспорте, и на различных магистральных станциях, где он обычно используется, как альтернатива дизельного двигателя. В сравнении с дизелем ТВД более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера.

В промышленности и народном хозяйства

ТВаД успешно используется в качестве нагнетателя природного газа на газоперекачивающих станциях. Его нередко можно увидеть на крупных газовых магистралях. Одна из последних разработок газовая турбина T16, мощностью 16 МВт. Короткое видео с применением турбовального двигателя в электроэнергетики.

Основные показатели:

  • 16,5 МВт — мощность на валу.
  • 37% — КПД, механический привод.
  • 36% — КПД, электрический (простой цикл).
  • 80% — КПД, комбинированное производство электроэнергии и тепла
  • 200 000 часов — полный жизненный цикл
  • выбросы NOx — не более 25 ppm.

Турбовальные двигатели используются в мобильных электростанциях для привода генератора. Электростанции с данным двигателем занимают меньший объем, аналогичной электростанции с традиционными двигателями.

В транспортной сфере

Несмотря на то, что в большинстве случаев турбовальные двигатели описываются, как силовые установки вертолетов, их применение не ограничено только ими. Частенько ТВаД играет роль не основного движителя, а вспомогательной установки. Такими установками обычно оснащаются самолеты, а используются они для питания энергией основных систем судна при его наземном обслуживании. То есть, когда самолет находится на земле, не обязательно запускать его основные моторы для получения электричества или создания давления в гидросистемах, для этого достаточно запуска такой небольшой установки. Также ТВаД используется в качестве пускового агрегата, который проворачивает ротор турбины при запуске. В этом случае он имеет название турбостартер.

Вид железнодорожного транспорта, на который устанавливается ТВаД, носит название газотурбовоз. Принцип его работы заключается в том, что турбовальный двигатель вращает вал генератора, вырабатывающего электрический ток. Ток поступает на электромоторы, которые, по сути, и являются основной силовой установкой. История газотурбовозов началась в 60-е годы, когда были сконструированы первые опытные образцы, правда, потом они уступили место более известным сейчас электровозам. Вместе с тем с 2007 года возобновились работы по созданию газотурбовозов, и даже был создан пробный экземпляр, работающий на сжиженном газе. Его испытания прошли успешно, так что в скором будущем, возможно, он будет выпускаться серийно.

Не обошли стороной ТВаД и создатели военной наземной техники. Некоторые танки, в том числе и отечественный Т-80 и американский М1 Abrams, оснащены ТВаД. Короткое видео разработки, внедрения и применения турбовального двигателя на танке.

Турбовальные двигатели также используются и на водном транспорте, называемом газотурбоходами. К ним относятся суда на воздушной подушке или на подводных крыльях. Наиболее известным отечественным газотурбоходом является военное судно «Зубр» — наиболее крупный десантный корабль на воздушной подушке. Этот гигант известен далеко за пределами России и является мировым рекордсменом среди суден на воздушной подушке по своим габаритам. А вот с отечественными пассажирскими газотурбоходами как-то не сложилось. Судно «Циклон», сконструированное в 80-хх годах, не пережило перестройки и со временем забылось, а новые пассажирские суда, оснащенные ТВаД пока не появились.

Танк Т-80 с газотурбинным двигателем

Десантное судно «Зубр»

Почему турбина на дизеле практически вечная?

Если сравнить турбину на бензиновом двигателе и взять средний пробег 90000-120000 км. и обычную турбину с дизельного мотора с пробегом 250000 км.а то и более.Работа турбины на бензине и на дизеле практически идентична. У турбины есть горячая часть и холодная.Горячая часть работает на энергии выхлопных газов которые идут с выпускного коллектора и раскручивает эту часть турбины. Она валом соединена с холодным компрессорным колесом которое раскручивается до высоких оборотов и нагнетает воздух в цилиндры двигателя. Берёт воздух с окружающей среды. За счёт этого воздушно топливной смеси у нас становится больше и растёт мощность двигателя.

Так почему дизельные турбины ходят дольше?

  • Это температура выхлопа. У бензина она составляет 800-900 градусов Цельсия , а у дизеля 500-600 градусов Цельсия. (Это в среднем.) Потому что КПД дизельного двигателя намного больше и энергия от сгоревшей смеси идет в работу, а у бензинового идёт на нагрев. Чем выше температура выхлопных газов тем сильнее разогревается турбина и масло которое смазывает подшипники ( втулки) может пригорать как в каналах так и в подшипниках. Поэтому смазка турбины будет происходить намного хуже и турбина может полностью за коксоваться и масло перестанет поступать. Масло не только смазывает но и отводит излишнюю температуру. Так как у бензинового движка температура выхлопа выше, значит турбина выходит из строя раньше срока. А на дизеле температура выхлопа ниже и турбина чувствует себя лучше.
  • Обороты двигателя. У бензина мотор работает в среднем 4000-6000 об. мин. А дизель в среднем 1500-2000 об. мин. Соответственно когда идёт выхлоп у бензинового двигателя то выхлопных газов проходит через турбину больше и турбина раскручивается быстрее. У дизеля обороты меньше и выхлоп не такой интенсивный и турбина раскручивается не так быстро как на бензине. Меньше оборотов больше ресурс турбины.У бензинового агрегата турбина развивает 100000-150000 об. мин. А дизеля показатели намного меньше. На бензине ставят клапана для сброса давления чтобы турбину не разорвало. На дизеле они тоже есть но дизель работает на меньших оборотах.
  • Масло. База у бензинового масла и у дизельного практически одинаковая. Но дизель работает на тяжёлом топливе и при сгорании образуется много серы. Сера твёрдое вещество и при оседании на деталях выступает в роли абразива. Поэтому в дизельное масло добавляют соответствующие мощные присадки для удаления серы и возможность держать в себе не давая оседать на трущихся деталях. А у бензинового масла таких присадок нет. Значит дизельное масло лучше смазывает турбину отводит окисления,серу и не пригорает, отводит тепло.
  • Интервалы замены масла. У дизельных моторов масло нужно менять чаще. Примерно 5000-7000 км. На бензине 8000-10000 км. Значит на дизеле масло чище и намного лучше смазывает турбину и поэтому турбина работает дольше на дизеле.

Турбогенераторы – применение в энергетике

Электрическая станция представляет собой промышленное предприятие, на котором производится электрическая, а в некоторых случаях и тепловая энергия на основе преобразования первичных энергоресурсов. В зависимости от вида природных источников энергии (твердое топливо, жидкое, газообразное, ядерное, водяная энергия) станции подразделяются на тепловые (ТЭС), гидравлические (ГЭС), атомные (АЭС). Станции, на которых одновременно с электрической вырабатывается и тепловая энергия, называют теплоэлектроцентралями (ТЭЦ).

Независимо от типа электростанции ее электрическую часть составляют электрогенераторы – устройства для преобразования первичной энергии (чаще всего механической) в электрическую, а также другие аппараты для преобразования и управления потоком электрической энергии: трансформаторы, выключатели, разъединители.

Для выработки электроэнергии на современных электрических станциях применяют синхронные генераторы трехфазного переменного тока.

Различают турбогенераторы (первичный двигатель – паровая или газовая турбина) и гидрогенераторы (первичный двигатель — гидротурбина).

Турбогенераторы предназначены для непосредственного соединения с паровыми или газовыми турбинами и, так как особенностью этих турбин является их быстроходность, имеют высокую частоту вращения. Чем выше частота вращения турбины, тем меньше ее габариты и больше к. п.д., поэтому естественно стремление повысить быстроходность турбогенераторов. Однако эта быстроходность имеет предел, ограниченный номинальной частотой сети f = 50 Гц и минимальным числом пар полюсов генератора р = 1.

Для синхронных генераторов в установившемся режиме существует строгое соответствие между частотой вращения агрегата n, об/мин, и частотой сети f, Гц

Паровые и газовые турбины выпускают на большие частоты вращения (3000 и 1500 об/мин), так как при этом турбогенераторы имеют наилучшие технико-экономические показатели. На ТЭС, сжигающих обычное топливо, частота вращения агрегатов составляет, как правило, 3000 об/мин, а синхронные генераторы имеют два полюса.

Высокая частота вращения ТГ определяет и особенности его конструкции. Эти генераторы выполняются с горизонтальным расположением ротора. Ротор ТГ работает при больших механических и тепловых нагрузках. Поэтому он изготовляется из цельной поковки специальной высококачественной стали (хромоникелевой или хромоникельмолибденовой), обладающей высокими магнитными и механическими свойствами.

У турбогенераторов ротор, как правило, выполняется неявнополюсным. Вследствие значительной частоты вращения размеры его ограничены: по длине (во избежание прогибов, приводящий к вибрациям) – 6-6,5 м и по диаметру (для снижения окружных усилий при вращении) – 1,1-1,2 м.

В активной части ротора, по которой проходит основной магнитный поток, фрезеруются пазы, заполняемые катушками обмотки возбуждения. В пазовой части обмотки закрепляются немагнитными легкими, но прочными клиньями из дюралюминия. Лобовая часть обмотки, не лежащая в пазах, предохраняется от смещения под действием центробежных сил с помощью бандажа. Бандажи являются наиболее напряженными в механическом отношении частями ротора и обычно выполняются из немагнитной высокопрочной стали.

Турбогенераторы с комбинированным водородно-водяным охлаждением предназначены для работы на атомных электростанциях.

Асинхронные турбогенераторы используются в составе мощных ТЭЦ и в энергосистемах со значительными колебаниями нагрузки.

Асинхронные турбогенераторы также имеют комбинированное водородно-водяное охлаждение.

Турбогенераторы с воздушным и масляным охлаждением применяются на тепловых электростанциях (ТЭС) с различной мощностью.

Типы турбин

  • Раздельный. Он имеет два сопла для каждой пары цилиндров и два входа для отработавших газов. Первое сопло предназначено для быстрого реагирования, второе служит для максимальной производительности. В конструкции есть разделенные выпускные каналы. Сделано это для предотвращения перекрытия каналов при выпуске выхлопных газов.
  • Компрессор с переменным соплом. Также он известен, как турбина с изменяемой геометрией. Применяется на моторах с маркировкой TDI от «Фольксваген». Здесь в конструкции имеется 9 подвижных лопастей. Они могут регулировать поток выхлопных газов, что идут к турбине. Угол наклона лопастей – регулируемый, что позволяет согласовать давление нагнетаемого воздуха и скорость движения газов с оборотами ДВС.

Для большей производительности на автомобиль может быть установлено два компрессора. Такие системы получили маркировку «Твин-турбо».

Устанавливаются данные механизмы последовательно. При этом первая турбина работает на низких оборотах, а вторая на высоких. На V-образных моторах нагнетатели устанавливаются параллельно (на каждый ряд по одной турбине). Как показывает практика, установка двух небольших компрессоров значительно эффективнее, чем применение одного, но большого.

Устройство и принцип работы турбовинтового двигателя

Строение турбовинтового двигателя довольно простое. Он состоит из воздушного винта с редуктором, компрессора, камеры сгорания, турбины и выходного устройства – сопла. Компрессор нагнетает и сжимает воздух, направляя его в камеру сгорания, куда впрыскивается топливо. Горючая смесь, полученная при смешивании воздуха с топливом, воспламеняется, образуя газы с высокой потенциальной энергией, которые, расширяясь, поступают на лопасти турбины, вращая ее, а сама турбина вращает воздушный винт и компрессор. Энергия, не потраченная на вращение турбины, выходит в виде потока воздуха через сопло, образуя реактивную тягу, величина которой не более 10% от общей тяги мотора. Поскольку она незначительна по своей величине, ТВД не считается реактивным. Как видно, по своему строению и принципу работы турбовинтовой двигатель очень напоминает турбореактивный с той лишь разницей, что в первом случае выработанная полезная энергия идет на вращение винта, а во втором она полностью выходит в виде потока воздуха через сопло, образуя реактивную тягу.

Строение турбовинтового двигателя

Рабочий вал

Различают двухвальные и одновальные турбовинтовые двигатели. В одновальных ТВД турбина с компрессором и винт расположены на одном валу, тогда как в двухвальных между ними нет механической связи: турбина и компрессор закреплены на одном валу, а винт через редуктор – на другом. Во втором случае конструкция мотора включает в себя две турбины, связанные между собой не механически, а газодинамически: одна для компрессора, вторая для винта. Это более распространенный и эффективный вариант, который, несмотря на более сложную конструкцию, используется чаще. Такое решение позволяет использовать энергию двигателя без запуска винтов, что удобно в случаях, когда самолет находится на земле и нужно обеспечить выработку электроэнергии и подачу воздуха высокого давления.

Компрессор

Компрессор ТВД имеет ступенчатую конструкцию с числом ступеней в пределах 2-6, что позволяет воспринимать значительные перепады давления и температур при работе, регулировать и снижать обороты

Многоступенчатая конструкция также дает возможность снизить массу и размеры мотора, что немаловажно для авиационных двигателей, где на счету каждый грамм веса. Компрессор состоит из рабочех колес с лопатками и направляющего аппарата

Направляющий аппарат может быть как регулируемым (с поворачивающимися лопатками вокруг своей оси), так и не регулируемым.

Воздушный винт

Воздушный винт создает необходимую тягу, но при этом скорость его вращения ограничена. Наиболее эффективно он работает на скорости 750-1500 об/мин, после чего КПД падает, а сам винт из движителя фактически превращается в тормоз. Это явление носит название «эффект запирания» и связано оно с тем, что отдельные части лопастей винта на высоких оборотах начинают двигаться со скоростью, превышающей скорость звука, что становится причиной его некорректной работы. Это же происходит, если увеличить диаметр лопастей, ведь чем они длиннее,  тем больше линейная скорость на их концах.

Турбина

Турбина же развивает скорость до 20 000 об/мин, но винт на таких оборотах просто не сможет работать, поэтому он оснащается понижающим редуктором, уменьшающим скорость вращения и повышающим момент. Редукторы по своему строению могут отличаться, но их задача – понижение скорости вращения и увеличение момента – остается неизменной. Ограничение скорости вращения винта во многом ограничивает использование ТВД особенно в военной авиации, где важна скорость, но ученые и конструкторы ведут активную работу по созданию сверхзвукового двигателя, правда, пока их старания не увенчались успехом. Для увеличения тяги на некоторых моделях устанавливаются по два винта, которые в процессе работы вращаются в противоположные стороны, приводимые в движение одним редуктором. Примером такого двигателя является Д-27, который называют турбовинтовентиляторным. Он оснащен двумя винто-вентиляторами, закрепленными через редуктор на оси свободной турбины. Пока это единственный двигатель такого рода, который используется в гражданской авиации на самолетах АН-70, но его появление и успешное использование смогут стать настоящим прорывом в сфере улучшения эксплуатационных показателей ТВД.

VGT

VGT, Variable-geometry turbocharger, также VNT, Variable Nozzle Turbine — обеспечивает оптимизацию потока отработавших газов за счет изменения сечения входного канала. Необходимость такого изменения обусловлена тем, что оптимальное сечение при низких и при высоких оборотах существенно разное. При большом сечении турбокомпрессор плохо работает на низких оборотах, при маленьком — на высоких. Таким образом, изменение сечения позволяет турбине подстраиваться под нагрузку с максимальной эффективностью.

VGT чаще встречаются на дизельных двигателях, т.к. более надежны при относительно низких рабочих температурах, характерных для дизельных двигателей. Конструктивно VGT отличаются наличием кольца из специальных лопастей особой аэродинамической формы. В маломощных двигателях (легковые автомобили, гоночные автомобили и малотоннажные грузовики) сечение регулируется изменением ориентации этих лопастей. В двигателях высокой мощности лопасти не вращаются, а покрываются специальным кожухом либо перемещаются вдоль оси камеры (VGT со скользящими лопастями). Движение лопастей осуществляется с помощью мембранного вакуумного привода, серво-, гидро- либо пневмопривода.

  1. направляющие лопатки;
  2. кольцо;
  3. рычаг;
  4. тяга вакуумного привода;
  5. турбинное колесо.

Особенности турбонегнетателей

Турбонаддув стандартного типа. Современные элементы зачастую производятся с использованием керамики, имеющей по сравнению со сталью меньшую плотность, что способствует уменьшению инерции и скорому раскручиванию детали. Производство некоторых современных турбин выполняется с использованием никелевого сплава. Выполненные из керамики турбонагнетатели улучшают возможности мотора (по сравнению с никелевыми аналогами), но использование этого чувствительного к действиям проходящих через выпусковый коллектор вредных веществ приводит к ее скорому повреждению. В турбинах снижение трения и приращение выпусковой силы достигается посредством шариковых подшипников. К примеру, роллерная или шарикоподшипникового типа Garrett, крепящаяся на шести болтах, устанавливается многими знаменитыми компаниями при изготовлении машин.

Турбонагнетатели с раздвоенным выходом. В этом виде улучшенная отдача достигается посредством предусмотренных разработчиками раздельных путей, проходящих к турбине. Этот вид турбонагнетателя устанавливается многими компаниями при оказании тюнинговых услуг.

Установка перепускных клапанов. Посредством этого элемента некоторый объем выхлопов пускается в обход. Это дает возможность ограничить быстроту оборачиваемости и давления на выпусковом коллекторе. Они устанавливают с целью обеспечения проходящего через турбину ограниченного воздушного потока во избежание повреждения мотора. Внутренние клапаны устанавливают вместе с турбиной, внешние – в отдельности от нее.

Как работает турбина на бензиновом двигателе?

Турбина бензинового мотора за счёт использования компрессора принудительно нагнетает в цилиндры массу воздуха. Значительно повышается обогащение кислородом топливно-воздушной смеси и улучшается сгораемость бензина. Коэффициент полезного действия существенно возрастает. Эффективность работы мотора увеличивается при неизменно объёме.

Мощность двигателя при использовании турбины возрастает прямо пропорционально количеству сжигаемого за единицу времени бензина. Для обеспечения максимального быстрого сгорания топлива в цилиндрах мотора необходим значительный объём воздуха. Именно его в достаточном количестве направляет турбина за счёт работы компрессора. Он принудительно подаётся в цилиндры, обогащая топливно-воздушную смесь.

Корпус подшипников.

Служит для размещения ротора, представленного валом несущим на себе турбинные и компрессорные кольца, оборудованные лопастями. Именно они при вращении захватывают воздуха и направляют его в цилиндры мотора.

Масляные каналы.

Пронизывают корпус турбины словно кровеносные сосуды на теле человека. Служат для своевременной доставки моторного масла к трущимся и вращающимся элементам. Снижают тем самым износ рабочих элементов бензиновой турбины.

Подшипник скольжения.

Его главная задача обеспечить свободное и плавное вращение ротора турбины с его лопастями для захвата достаточного количества воздуха. Его смазку и охлаждение обеспечивает циркулирующее в турбине моторное масло.

Корпус.

Корпус турбины, имеющий форму улитки обеспечивают защиты от внешних механических воздействий рабочие элементы устройства для нагнетания воздуха.

Привод турбины бензинового мотора осуществляется за счёт подачи отработанного газа энергия которого заставляет ротор вращать лопасти. Сложного в конструкции и работе ничего нет всё понятно и достаточно просто.

При запуске бензинового мотора отработанные газы и цилиндров мотора направляются  прямиком в турбину. Они приводят в движение ротор, отдавая ему свою энергию. Далее, через приёмную трубу они поступают в глушитель и выводятся в окружающую среду.

Вал ротора раскручивает колесо компрессора и лопаточное колесо. Они захватывают воздух из окружающей среды, поступающий через воздушный фильтр мотора. Он принудительно подаётся в цилиндры двигателя. Компрессор турбины может повышать давление воздуха до 80%.

Работа турбины бензинового мотора позволяет обогащённую кислородом топливно-воздушную смесь наполнять цилиндры в большом количестве. Объём мотора остаётся неизменным, но его мощность существенно возрастает. В среднем использование турбины даёт возможность увеличить мощность силовой установки машины на 20-30%.

Как работает активная турбина

Устройство и принцип действия паровой турбины активного типа заключается в следующем.

Свежий пар с определенными значениями давления и скорости передается в сопло, где происходит его расширение также до определенного показателя давления. Естественно, что вместе с этим параметром, будет увеличиваться и скорость струи. С увеличенным значением скорости, поток пара доходит до механических частей — лопаток. Воздействуя на эти элементы, струя рабочего вещества заставляет вращаться диск, а также вал, на котором он закреплен.

Далее, при выходе из лопаток, поток пара обладает уже другим значением скорости, которое обязательно будет ниже, чем перед этими элементами. Это происходит из-за того, что часть кинетической энергии преобразовалась в механическую

Здесь также важно отметить, что во время прохождения по лопаткам значение давления меняется. Однако важно то, что на входе и на выходе из этих элементов данный параметр имеет одинаковое значение

Это обусловлено тем, что каналы между лопатками обладают одинаковым сечением по всей своей длине, а также внутри этих деталей не происходит добавочного расширения пара. Для того чтобы выпустить пар, который уже отработал, имеется специальный патрубок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector