Устройство и принцип работы кислородного датчика

Проверка лямбда-зонда тестером:

Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

  • всё время 0,1 — мало кислорода
  • всё время 0,9 — много кислорода
  • Зонд исправен, проблема в чём-то другом.

Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

  1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
  2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
  3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
  4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.

Проверка напряжения в цепи подогрева

Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

Проверка нагревателя лямбда зонда

Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:

https://youtube.com/watch?v=CxhGVt5_YUA

Проверка опорного напряжения датчика кислорода

Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.

Лямбда-зонд представляет собой датчик концентрации кислорода. Механизм позволяет оценить объём кислорода, который не успел сгореть. Устройство располагается в выпускном коллекторе перед катализатором. Сигнал этого датчика поступает в электронный блок управления системы впрыска топлива. Данный блок оптимизирует состав горючей смеси, контролируя подачу топлива в цилиндры двигателя. Необходимость в лямбда-зонде возникает из-за жёстких экологических норм, распространяемых на автомобили. Оптимальный состав смеси топлива и воздуха — 14,7 части воздуха и 1 часть топлива. Этим показателем обусловлена эффективность сгорания топливовоздушной смеси.

Устройство внешне не напоминает необходимую деталь, но довольно часто у автовладельцев возникают проблемы в двигателе

Поэтому важно знать, как проверить лямбда-зонд мультиметром

Регулировка соотношения топливовоздушной смеси

Передний датчик O2 отвечает за поддержание оптимального соотношения смеси воздух / топливо, поступающей в двигатель, которая составляет приблизительно 14,7:1 или 14,7 частей воздуха на 1 часть топлива.

Блок управления регулирует топливовоздушную смесь на основе обратной связи от переднего датчика кислорода. Когда передний лямбда-зонд обнаруживает высокий уровень кислорода, ЭБУ предполагает, что двигатель работает на бедной смеси (недостаточно топлива) и поэтому добавляет топлива.

Когда уровень кислорода в выхлопе становится низким, ЭБУ предполагает, что двигатель работает на богатой смеси (слишком много топлива) и уменьшает подачу топлива.

Этот процесс непрерывен. Компьютер двигателя постоянно переключается между обедненным и обогащенным состоянием, чтобы поддерживать оптимальное соотношение воздух / топливо. Этот процесс называется операцией замкнутого цикла.

Если вы посмотрите на сигнал напряжения переднего датчика кислорода, он будет циклически колебаться где-то между 0,2 вольт (бедная) и 0,9 вольт (богатая).

Когда автомобиль заводится холодным, передний кислородный датчик не прогрет полностью, и ЭБУ не использует сигнал ДК1 для регулировки топлива. Этот режим называется разомкнутым контуром. Только когда датчик полностью прогрелся, система впрыска топлива переходит в режим замкнутого контура.

В современных автомобилях вместо обычного датчика кислорода установлен широкополосный датчик топливовоздушного соотношения. Датчик соотношения воздух / топливо работает по-другому, но служит той же цели — для определения, является ли топливовоздушная смесь, поступающая в двигатель, обогащённой или обеднённой.

Датчик топливовоздушного соотношения является более точным и может измерять более широкий диапазон.

Какие бывают лямбда зонды?

Лямбда-зонд высокого напряжения

Зонд обернут в защитный керамический чехол, дополнительно используется внешний защитный изолятор. Щупы переменного напряжения имеют встроенный нагревательный элемент с электропитанием, благодаря которому они могут работать в течение 20 — 30 секунд после запуска двигателя. Наружная поверхность зонда образует отрицательный полюс, а внутренний положительный. Внутренний воздух подключается к электроснабжению и атмосферному воздуху через подходящий канал. Для соединения используются платиновые покрытия. Электропроводящее керамическое покрытие погружено в поток выхлопных газов. При температуре выше 300 ° С он становится проницаемым для ионов кислорода. Разница между количеством ионов кислорода в воздушной камере и количеством ионов кислорода в выхлопной камере вызывает разность потенциалов.

Лямбда-датчик переменного сопротивления

Зонд этого типа также заключен в защитный металлический корпус. Сердцем зонда является керамический корпус, выполненный из диоксида титана, покрытый платиновым покрытием. Титан с платиной образуют электрод зонда. Работа зонда заключается в изменении электропроводности тела. Диоксид титана характеризуется большей проводимостью по току, когда в выхлопных газах содержится больше кислорода, или же меньше.

Широкополосный лямбда-зонд

Это самая лучшая и самая сложная конструкция. Он также нагревается, так что он может начать работать сразу после запуска двигателя. Он состоит из двух датчиков переменного напряжения, изготовленных из диоксида циркония. Один зонд выступает в качестве измерительной ячейки, другой — насосной ячейки (при определенной температуре происходит движение потока кислорода, который можно направлять с помощью соответствующей поляризации — плюс / минус). Между ячейками имеется диффузионный зазор толщиной до 50 микрометров. Диффузные газы попадают в диффузионный зазор через канал. В свою очередь, в измерительной ячейке есть второй канал, который принимает чистый воздух из окружающей среды.

Измерительная ячейка действует как типичный датчик переменного напряжения, показывающий количество кислорода в выхлопе. Ток, питающий насосную ячейку, пропорционален количеству кислорода в выхлопных газах, измеренному измерительной ячейкой. Ток накачки — это величина, с помощью которой компьютер управляет работой двигателя, выбирает соответствующий состав топливно-воздушной смеси (используя показания, хранящиеся в карте памяти).

Датчики более старого типа информировали компьютер управления двигателем только о том, была ли смесь слишком насыщенной или слишком бедной. Новейшие широкополосные датчики позволяют постоянно информировать компьютер о фактическом составе выхлопных газов, чтобы компьютер мог регулировать количество впрыскиваемого топлива быстрее и точнее. Это связано не только с выбросами выхлопных газов, но и с экономией топлива. Этот тип зондов используется в бензиновых и дизельных двигателях.

Последствия неисправностей

Некачественное изделие (как уже говорилось выше) вряд ли способно передавать достоверную информацию блоку управления. На сегодняшний день в продаже можно встретить лямбды зонды с подогревом или без этой функции. Оснащенные подогревом изделия отличаются более длительным сроком эксплуатации.

Одним словом, любая серьезная неисправность этого датчика приводит к следующим последствиям:

  1. повышение расхода топлива;
  2. снижение мощностных характеристик мотора;
  3. появление нагара из-за неполного прогорания топливной смеси;
  4. ускоренный износ цилиндров;
  5. перебои в работе на холостых оборотах;
  6. повышение выброса в атмосферу вредных веществ.

Рабочий цикл широкополосного датчика

Рабочую зону широкополосного лямбда зонда принято условно делить на 4 части. Это удобно для понимания принципа работы узла, во время диагностики, когда на приборной панели выходит ошибка системы.

  1. Камера ионого электролизного насоса — А.
  2. Чувствительный элемент или элемент Нернста — В.
  3. Электроцепь — С.
  4. ЭБУ — Д.

Отработанные газы, проходя по патрубку системы проникают в диффузионную щель, где происходит процесс дожигания. После дожига в камере образуется либо избыток, либо нехватка кислорода. Время каталитического сгорания твердых частиц в камере занимает 0.01 сек., но поскольку процесс дожига происходит только при высоком нагреве газа (от 200–300 градусов по Цельсию), камера нагревается через элемент нагревателя.

После догара топливного выхлопа в блоке, чувствительный элемент Нернста проводит сравнение, полученный состав воздуха с эталонным и передает информацию на ЭБУ мотора в одном из трех вариантов:

  • недостаток кислорода (лямбда «минус»), смесь обедненная;
  • переизбыток (лямбда «плюс»), смесь обогащенная;
  • стехиометрия (лямбда =1) — уравновешенный параметр.

На основе показателей ЭБУ посылает импульс на ионный насосный блок. В зависимости от первичных данных блок управления передает одну из трех команд.

  1. При переизбытке кислорода формируется положительный ток, смесь обедненная, необходимо провести лишний кислород в выхлопной патрубок.
  2. Если смесь обогащенная, необходимо закачать кислород из коллектора выхлопной системы в камеру и сформировать отрицательный ток.
  3. При стехиометрии ЭБУ не дает сигнал.

Во время формирования положительного или  отрицательного тока в блоке ионного насоса, формируется показатель качественного состава выхлопной смеси. ЭБУ считывает параметр тока на сторонах насоса и формирует сигналы на корректировку подачи топлива в систему впрыска.

После внедрения широкополостных датчиков в систему выходного коллектора значительно упростился процесс диагностики и отпала необходимость использовать газоанализаторы. Но не все так однозначно в работе современных датчиков.

Важная особенность

Стоит отметить, что работа чувствительных наконечников возможна только при достижении температуры в триста градусов Цельсия. Рабочий диапазон керамических электродов составляет от трехсот до тысячи градусов. Но как тогда действует элемент «на холодную»? Ранее на двухконтактных устройствах сигнал формировался от иных датчиков (расхода воздуха, положения заслонки и числа оборотов коленвала). Усредненное значение лямбды поступало на блок и тот формировал готовую смесь. Правда, значения эти были не всегда верными. Это не гарантировало оптимальную и стабильную работу двигателя внутреннего сгорания.

Поэтому в новом поколении датчиков (широкополосного типа) используется специальный подогреватель. Его функция – повысить температуру наконечников. Это необходимо, чтобы устройство включилось в работу сразу же после холодного старта двигателя. При достижении температуры в триста градусов, керамический элемент становится твердым электролитом, который пропускает сквозь себя ионы кислорода, скопившиеся на платиновой электродной сетке.

Нагревательный элемент расположен внутри корпуса датчика и питается принудительно от бортовой сети автомобиля.

Принцип работы лямбда-зонда

Как известно, в настоящее время пока ещё не изобретено способов, как повысить КПД технического устройства до 100%. Автомобильный двигатель не является исключением – в этом сложном агрегате существует немало узлов, в которых происходят энергетические потери. В частности, сгорание топливовоздушной смеси в цилиндрах происходит не полностью, о чём свидетельствует наличие в выхлопном газе остатков кислорода и углеводородов.

Так вот, лямбда-зонд как раз и представляет собой датчик, в задачи которого входит определение химсостава выхлопа. А если быть точнее – содержимого в нём кислорода. В норме этот показатель должен находиться в пределах 0.1-0.3%. Увеличение данного значения будет свидетельствовать о переобогащённой смеси, что для ДВС так же плохо, как и работа на обеднённой ТВС.

Лямбда-зонд в большинстве случаев устанавливается в оконечной части системы выпуска отработанных газов, перед и после выпускного коллектора (следует отметить, что вместо обычного глушителя в таких случаях присутствует его модифицированная разновидность – каталитический нейтрализатор).

Разумеется, прогресс не стоит на месте – конструкция лямбда-зонда постоянно совершенствуется. Двухканальная компоновка как более простая в изготовлении характерна для транспортных средств эконом-класса, а также автомобилей, производившихся, начиная с 80-х годов прошлого века. В настоящее время преобладают системы широкополосного типа – такой лямбда-зонд оказывает более положительное воздействие работу двигателя, поскольку умеет определять состав выхлопа с гораздо большей точностью.

Если перечислить, на что влияет лямбда-зонд в машине, то окажется, что улучшение качественного состава ТВС – это отнюдь не самоцель. Благодаря более эффективному горению смеси удаётся заметно увеличить общий ресурс силового агрегата, добиться ощутимого снижения расхода топлива, а также решить проблему нестабильной работы мотора на ХХ.

Если рассмотреть более детально, как работает лямбда-зонд, то оказывается, что он не может формировать однородный сигнал, поскольку сам принцип работы силового агрегата основан на генерации неоднородного количества циклов за единицу времени. Так что можно утверждать, что кислородный датчик в общем случае реагирует на отсутствие стабильности в функционировании мотора, и оповещение об этом бортового компьютера и является основной задачей этого устройства.

Проще говоря, кислородные датчики в режиме реального времени отсылают данные в ЭБУ (вернее, в блок бортового компьютера, специализирующийся на управлении работой топливной системой), а уже там происходит анализ этих данных. Он заключается в усреднении полученной информации и сравнении результата с эталонным значением. В качестве таковой принято считать стехиометрическую топливовоздушную смесь, в которой на 1 объёмную часть горючего приходится 14.7 объёмных частей атмосферного воздуха. Такое соотношение обозначается буквой λ и принимается за единицу. Если лямбда (вот и ответ на вопрос, почему устройство называется лямбда-зондом) меньше единицы – смесь обогащённая, то есть объёмная доля топлива больше единицы. В противном случае говорят об обеднённой ТВС.

ЭБУ корректирует работу топливной системы таким образом, чтобы коэффициент λ всегда был равен единице, благоприятствуя самому эффективному сгоранию топлива и повышению КПД двигателя до максимально возможного значения.

Если отключить лямбда-зонд, даже при идеально настроенном механизме подачи ТВС, со временем он будет сбиваться. А неоптимизированное сгорание горючего – это следующие неприятные моменты:

  • перегрев силового агрегата;
  • более быстрый износ всех компонентов системы выхлопа, включая каталитический нейтрализатор;
  • увеличенный расход технических жидкостей (масла, горючего, ОЖ);
  • быстрое прогорание клапанов, поршней, колец;
  • заметное снижение мощности (тяги) мотора на всех режимах.

Поэтому так важно поддерживать кислородные датчики в исправном состоянии

Прочистка кислородного датчика

Если датчик не исправен, то, обычно, его требуется заменить, но в иногда проблему можно решить, почистив кислородный регулятор.

Для прочистки датчика следуйте инструкции:

  1. Отключить контроллер от питания.
  2. Демонтировать датчик. Удобнее это сделать при помощи специального инструмента, но если такового нет, то выполните демонтаж руками.
  3. Процедура прочистки осуществляется ортофосфорной кислотой. Кислородный регулятор помещается в ёмкость с кислотой ориентировочно на 10-20мин. Этого времени достаточно, чтобы кислота удалила имеющиеся отложения и окислы, не разрушив целостность электродов. Для наибольшего эффекта прочистки можно снять защитный колпак, но сделать это не всегда возможно, поскольку для демонтажа необходим токарный станок.
  4. По завершению процедуры прочистки контроллера необходимо промыть его в воде и хорошо просушить.

Если выполненные действия не привели к работоспособности устройства, то его требуется поменять. Заменяя регулятор кислорода, следует убедиться в том, что разъёмы на меняемых датчиках идентичны.

Чистка кислородного датчика

Обманка лямбда зонда

Обманка лямбда зонда

Кислородный датчик подаёт сигнал тогда, когда он обнаружил изменения в содержании кислорода. Данный сигнал передаётся на контроллер, который его принимает и сравнивает полученную информацию с показателями, заложенными в памяти. Если полученные данные не совпадают с оптимальными значениями, то блок управления изменяет длительность впрыска. Этим достигаются следующие показатели:

  • экономия топлива;
  • максимальная эффективность работы двигателя;
  • уменьшение объёма вредных выхлопов.

Но немногие автолюбители прислушиваются к этим рекомендациям и начинают вспоминать о датчике только при появлении проблем. В итоге большинство водителей видят на приборной панели загоревшийся индикатор Check Engine. Причиной этому, скорее всего, стал вышедший из строя либо некорректно работающий кислородный датчик. Решением данной проблемы станет обманка лямбда зонда, которая бывает механической и электронной. 

Механическая обманка

При выборе обманки такого типа вместо катализатора устанавливают специальный проставок – деталь из теплоустойчивой стали или бронзы со строго определёнными размерами. В проставке высверливается отверстие малого диаметра, через которое отработавшие газы смогут в него попадать.

Газы взаимодействуют с керамической крошкой, которую предварительно покрывают каталитическим слоем и помещают внутри проставка. В результате такого взаимодействия осуществляется окисление CH и CO кислородом, после чего снижается концентрация вредных веществ на выходе.

Если на автомобиле установлены два кислородных датчика, то сигналы с них будут различаться, блок управления распознает изменение синусоиды сигнала и расценит это как штатную работу катализатора. Данный вариант является самым дешёвым. 

Обманка электронного типа

Такой тип обманки гораздо сложнее. В продаже имеются весьма технологичные обманки со встроенным микропроцессором. Они способны не просто обмануть блок управления, а обеспечить его корректную работу. Микропроцессор, установленный в таком устройстве, может оценить состояние выхлопных газов и сформировать сигнал, соответствующий сигналу со второго работающего датчика при исправном катализаторе.

Что такое лямбда-зонд

Если говорить о том, за что отвечает лямбда-зонд, то проще всего охарактеризовать его как прибор, определяющий уровень кислорода, который содержится в отработанных газах.

Дело в том, недостаточный объем воздуха в топливной системе (λ > 1 – бедная смесь) обычно приводит к тому, что углеводороды и образовывающийся угарный газ не будут полностью окисляться. Если же кислорода будет, наоборот слишком много в этой смеси (λ < 1 – богатая смесь), то оксиды азота не будут разлагаться на кислород и азот. Поэтому наличие ЛЗ в любой системе просто необходимо.

Если рассматривать, что такое лямбда-зонд в автомобиле, исходя из его конструкции, то датчик кислорода состоит из следующих элементов:

  • Керамического наконечника (обычно изготавливается на основе двуокиси циркония), оснащенного защитными экранами, а также отверстиями для забора выхлопных газов и атмосферного воздуха. Именно эти экраны являются рабочими элементами ЛЗ.
  • Теплопроводящих нагревательных элементов, которые находятся внутри керамических наконечников.
  • Токосъемников электрического сигнала, расположенных в средней части кислородных датчиков.

Все эти составляющие (кроме чувствительных частей наконечников) закрыты металлическим корпусом с резьбой, благодаря которой деталь фиксируется на корпусе приемной трубы.

Как определить, сколько датчиков кислорода установлено в автомобиле

Чтобы выяснить, сколько лямбда-зондов находится в вашем автомобиле, можно обратиться в автосервис, где вам выдадут распечатку с данными о диагностике ЛЗ (обычно это снимок днища машины с выделенными датчиками). Однако можно сэкономить и найти их самостоятельно.

В первую очередь необходимо выяснить в каком году был изготовлен автомобиль. Если вы являетесь владельцем АТС, произведенного до 2000 года, то, скорее всего, в нем установлен только 1 ЛЗ. В более современных машинах, выпущенных после «нулевых» обычно находится 2 или 4 датчика.

Чтобы определить их количество еще точнее необходимо уточнить объем двигателя. Если он составляет:

  • меньше 2 литров, то в машине вы найдете 2 ЛЗ (один будет расположен в подкапотном пространстве, где вы легко его заметите, а второй – под днищем авто);
  • больше 2 литров, то в авто будет 4 датчика (2 верхних, расположенных в подкапотном пространстве и 2 нижних – под днищем машины).

Найти верхние датчики довольно просто (именно их чаще всего меняют), для этого:

  • Откройте капот авто.
  • По центру подкапотного пространства под пластиковой крышкой с наименованием марки машины вы найдите мотор авто.
  • Осмотрите пространство вокруг двигателя и найдите массивные трубы (выпускной коллектор), которые одной стороной примыкают к мотору, а другой уходят вглубь.
  • На выпускном коллекторе найдите небольшую деталь цилиндрической формы, длина которой будет порядка 5-7 сантиметров. Это и будет лямбда-зонд (или несколько, в этом случае один датчик будет расположен справа, а другой – слева).

Стоит отметить, что информация о том, для чего нужен лямбда-зонд и где он расположен, интересует автовладельцев далеко не из-за праздного интереса. Дело в том, что согласно сервисным книжкам разных автомобилей эти элементы нужно менять после определенного пробега. Обычно замене подлежат ЛЗ поработавшие более 80 тысяч километров, однако, исходя из практики, датчики способны выдерживать нагрузки вдвое больше, если вы будете придерживаться нескольким рекомендациям.

Основные типы устройств

Сегодня можно выделить несколько типов кислородных датчиков. Все они могут отличаться по нескольким критериям:

  • по числу проводов — от 1 до 6;
  • по организации сенсорного элемента (есть два вида — пластинчатые и пальчиковые);
  • по крепежу в выхлопной трубе — фланцевые или на резьбе;
  • по диапазону измерений параметра лямбды — широкополосные (измерение производится в диапазоне от 0.7 до 1.6) или узкополосные, контролирующие уровень лямбда на уровне выше единицы.

Каждый из типов устройств имеет свои особенности.

Одно контактные устройства.

Оборудованы одним сигнальным проводом. Именно по нему передается сигнал, генерируемый устройством.

2-контаткные датчики.

Оборудуются двумя проводами. Один является сигнальным, а второй выполняет функцию заземления через корпус устройства.

С помощью заземляющего проводника можно точно определить показатели сигнального провода.

3-контактные.

Здесь предусмотрен сигнальный провод, один «массовый» провод и третий провод, направляемый к нагревательному устройству.

Особенность таких датчиков — быстрое достижение нужной температуры, повышенный период службы устройства, а также меньшие требования к выхлопной системе.

Нагревательный элемент, который монтируется в системе, имеет мощность 12 или 18 Вт.

4-контактные – устройства.

В них предусмотрено четыре провода:

  • сигнальный проводник,
  • провод, питающий нагревательное устройство;
  • третий провод — «земля»;
  • четвертый провод — может использоваться для решения каких-либо других задач (в зависимости от системы управления автомобиля).

Может быть такое положение контактов.

К примеру, его можно использовать в качестве заземления или же для питания нагревательного элемента.

Особенность современных лямбда-зондов в том, что они взаимозаменяемы и имеют схожую конструкцию.

К примеру, можно менять датчики с подогревом на устройства без подогрева. При этом возможны проблемы с разъемами или невозможностью запитать устройство.

В случае нехватки проводов их можно проложить самостоятельно, а в качестве разъема использовать контакты автомобиля.

Маркировка может отличаться, но провод подачи сигнала всегда окрашивается в черный цвет.

«Масса» может быть желтой, серой или белой.

Лямбда зонд, катализатор и обманки

Что делать, если обследование у специалистов подтвердило выход из строя кислородного датчика?

Вариантов может быть несколько: замена, которая станет в копеечку, так как эти элементы очень дорогие, или же установка обманки, которая будет создавать для блока управления ложные сигналы.

Конечно же, первый способ предпочтительнее, ведь от правильной работы всей электронной системы зависит и здоровье двигателя, но если вам по душе второй вариант, то кое-какие нюансы данной процедуры стоит раскрыть.

Стоит отметить, что обманки применяют и при исправных лямбда, а всё из-за того, что современные выхлопные системы комплектуют ещё одним дорогостоящим компонентом — катализатором.

Катализатор должен очищать газы, выходящие из мотора, а для контроля его работы ставят два датчика — один перед ним, а второй после.

Признаком исправности узла являются различные показания двух зондов, а если катализатор удалён, то понадобится создать эмуляцию его работы, и тут вам без вышеупомянутых обманок не обойтись

Принцип работы кислородного датчика

Итак, каков принцип работы датчика? Когда на лямбда-зонд попадают ионы кислорода, он начинает производить слабый электрический ток. Этот ток попадает в электронный блок управления транспортного средства. Он обрабатывает сигнал и в зависимости от полученной в ходе обработки информации меняет состав топливной смеси, которая поступает в цилиндровый блок. Чем выше напряжение датчика, тем меньше впрыск горючего, и наоборот – чем оно выше, тем больше топлива поступает в цилиндровую группу.


Стоит отметить, что без попадания на его поверхность кислорода прибор не может работать совсем. Соответственно, реакция на них должна иметь место и до пуска двигателя. Проблему решают следующим образом:

  • датчик размещают таким образом, чтобы до старта мотора он контактировал с атмосферным воздухом;
  • в прошивку электронного блока управления вносят программу, которая позволяет устройству в первые секунды работы двигателя не учитывать показания устройства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector