Измерительный инструмент

Классификация измерительных инструментов

При проведении работ, связанных с изготовлением различных деталей, ремонтных и строительных работ и пр. применяют контрольно-измерительные инструменты. Предприятия, занимающиеся производством этой продукции, выпускают множество видов измерительного инструмента – ручной, универсальный, цифровой и пр.

К ручному измерительному инструменту относят такие, как — линейки, рулетки, угольники, штангенинструмент, микрометрический и пр. Большая часть ручного инструмента относится к универсальному измерительному инструменту. Такие изделия можно применять при проведении замеров большей части деталей и узлов.

Ручные измерительные инструменты

Для выполнения точных замеров применяют инструмент с установленным на нем лазером. Такие изделия применяют в строительстве – это уровни, дальномеры, и другие изделия, предназначенные для выполнения разметки фронта работ или проведения геодезических исследований. Лазерный измерительный инструмент отличается простотой в эксплуатации, точностью снятых показаний. Большая часть такого инструмента может передать полученные данные для дальнейшей обработки в компьютер.

Строительный измерительный инструмент нашел свое применение на строительной площадке. Он отличается простотой в эксплуатации, ручной, не отличается высокой точностью. В то же время на стройплощадке применяют инструмент, использующий лазерный луч. Это позволяет выполнять замеры с точностью до долей миллиметра.

Измерительный и разметочный инструмент применяют перед началом работ. С его помощью производят разметку заготовок, обрисовывают контуры будущей детали и только после этого приступают к ее изготовлению. В плотницких и столярных работах применяют следующие инструменты – складной метр, рулетку, уровень, в том числе и гидравлический. Кроме этого, используют и такие, как рейсмус, циркули, угольники разных размеров. Существуют и такие приборы, как ерунок или малка. Для работы с металлом применяют другие приборы, например, штангенрейсмас или штангенциркуль с разметочными губками. Для работы с металлом целесообразно использовать и так называемые слесарные линейки, изготавливаемые из качественной нержавеющей стали и имеющие цену деления от 1 до 0,5 мм. Кроме этого, в производстве применяют лекала, их используют для разметки сложных дуговых линий.

Механический измерительный инструмент можно подразделить на пять классов:

  • бесшкальный;
  • штангенинструмент;
  • головки;
  • зубчато-рычажный;
  • микрометрический.

К первому классу относят линейки – поверочные и лекальные.  С их помощью проверяют прямолинейность поверхности. Она может быть выполнена на просвет, или для этого используют щупы.Для контроля просвета поверочную линейку укладывают на контролируемую поверхность, например, на станочные направляющие. К мерительным устройствам этого класса относят поверочные плиты, концевые меры длины и многие другие.

Поверочная плита

Штангенинструмент состоит из двух контрольных поверхностей, между которыми и выставляют размер. Одна поверхность является частью штанги, на второй подвижной или закреплена контрольная линейка, на которую нанесены размерные риски. Они могут иметь разную цену деления в зависимости от точности инструмента.Инструмент этого класса применяют для замера внешних и внутренних размеров – штангенциркули, для выполнения замеров глубины паза. С помощью инструмента этого типа контролируют размеры зуба в шестерне.

Измерительными головками называют устройства, которые преобразуют перемещения мерительного наконечника в движение стрелки на круговой размеченной шкале. Эти устройства применяют, например, для выполнения замеров биения детали, зажатой в патрон токарного станка. Для удобства работы с такой головкой, на заводском сленге ее называют «часы», применяют стойки или штативы. Измерительные головки разделяют на:

  • пружинные;
  • рычажно – зубчатые;
  • рычажные.

Измерительные головки

У микрометрического инструмента главным элементов является шпиндель, на поверхность которого нанесена особо точная резьба. Этот инструмент способен проводить замеры с точностью до 0,01 мм. Микрометрический инструмент устанавливают в скобы,приспособления и пр. представители этого класса инструмента — микрометры, микрометрические нутро- и глубиномеры пр.

Выбор средств измерений и их применение

Выбор средств измерений при проверке точности деталей – один из важнейших этапов разработки технологических процессов технического контроля.

Основные принципы выбора средств измерений заключаются в следующем: точность средства измерений должна быть достаточно высокой по сравнению с заданной точностью выполнения измеряемого размера, а трудоемкость измерений и их стоимость должны быть возможно более низкими, обеспечивающими наиболее высокие производительность труда и экономичность.

Недостаточная точность измерений приводит к тому, что часть годной продукции бракуют (ошибка первого рода); в то же время по той же причине другую часть фактически негодной продукции принимают как годную (ошибка второго рода).

Излишняя точность измерений, как правило, бывает связана с чрезмерным повышением трудоемкости и стоимости контроля качества продукции, а следовательно, ведет к удорожанию ее производства.

При выборе измерительных средств и методов контроля изделий учитывают

  • допустимую погрешность измерительного прибора–инструмента;
  • цену деления шкалы;
  • порог чувствительности;
  • пределы измерения, массу, габаритные размеры, рабочую нагрузку и др.

Определяющим фактором является допускаемая погрешность измерительного средства, что вытекает из стандартизованного определения действительного размера как и размера, получаемого в результате измерения с допустимой погрешностью.

Самый простой способ выбора средств измерений основан на том, что точность средства измерений должна быть в несколько раз выше точности изготовления измеряемой детали. При контроле точности технологических процессов измерением точности размеров деталей рекомендуется применять средства измерений с ценой деления не более 1/6 допуска на изготовление.

Значение допустимой погрешности измерения зависит от допуска, который связан с номинальным размером и с квалитетом точности размера контролируемого изделия. Расчетные значения допустимой погрешности измерения в мкм приводятся в стандартных таблицах.

Рекомендуется, чтобы величины допустимых погрешностей измерения для квалитетов 2–9 составляли до 30%, для квалитета 10 и грубее – до 20% допуска на изготовление изделия.

Это интересно: Инструмент для художественной резьбы по дереву

Микрометры, нутромеры и глубиномеры.

Некоторые часто встречающиеся размеры, например диаметр цилиндра, диаметр и глубину отверстия, невозможно точно измерить, прикладывая к детали обычную измерительную линейку. Но можно «взять» диаметр или глубину отверстия при помощи кронциркуля-нутромера или глубиномера, а затем измерить взятое расстояние по линейке или штриховой мере. Для повышения точности таких измерений применяются кронциркули прямого отсчета, снабженные шкалой, а также микрометры и штангенприборы того же назначения. В микрометрических приборах используется высокоточная винтовая резьба очень малого шага. Отсчет по микрометру сводится к определению числа полных оборотов и долей оборота барабана относительно его нулевого положения. Полные обороты отмечаются штрихами линейной шкалы на неподвижном стебле, а дробные доли оборота – штрихами круговой шкалы на торцевой кромке вращающегося барабана. В большинстве микрометров англоязычных стран используется резьба, имеющая 40 ниток на дюйм, и предусматривается 25 делений на барабане, так что каждому делению барабана соответствует перемещение измерительного стержня на одну тысячную дюйма. Аналогичные характеристики имеют метрические микрометры.

Штангенциркуль позволяет отсчитывать диаметр непосредственно и с высокой точностью. Неподвижная основная шкала британского штангенциркуля имеет 50 делений на дюйм, а подвижная шкала нониуса – всего 20 делений. Сумма этих 20 делений равна сумме 19 делений основной шкалы. Поэтому, когда нулевой штрих шкалы нониуса останавливается между двумя штрихами основной шкалы, только один штрих шкалы нониуса может лежать точно напротив какого-либо штриха основной шкалы. Число соответствующих ему делений шкалы нониуса равно числу двадцатых долей деления, на которое нулевой штрих шкалы нониуса смещен относительно одного штриха основной шкалы в сторону следующего штриха. Это и дает возможность отсчитывать измеряемый диаметр с точностью до тысячных долей (дюйма, сантиметра).

Механика

  1. Измерительные приборы для измерения длины

    Длина является основной физической величиной, используемой для определения расстояния между двумя точками в пространстве, движение должно происходить по прямой линии. Обозначается длина, как L, единица измерения — метр.

    Для измерения длины, используя следующие измерительные приборы:

    Система глобального позиционирования (GPS);

  2. Метр (инструмент);
  3. Микрометр;
  4. Концевая мера длины, используемая для точного измерения и контроля измерительных приборов.
  5. Одометр для измерения расстояния на дорогах и местности.
  6. Радар.
  7. Линейка.
  8. Измерительные приборы для измерения объема

    Мерный стакан для измерения объема жидкости;

  9. Пикнометр для измеренной относительной плотности;
  10. Измерение расхода объема газа;
  11. Счетчик воды для измерения расхода жидкостей.
  12. Измерительные приборы для измерения скорости

    Анемометр используется для измерения скорости ветра;

  13. Спидометр воздушных судов;
  14. Доплеровский радар, который использует эффект Доплера;
  15. Тахометр измерить скорость;
  16. Электронный тахеометр;
  17. Вариометр.
  18. Измерительные приборы для измерения давления

    Барометр для измерения атмосферного давления;

  19. Трубка Пито
  20. Измерительные приборы для измерения крутящего момента

    Динамометр представляет собой измерительный прибор для измерения силы или крутящего момента. Он основан на изменении длины упругой пружины под действием силы.

Готовые работы на аналогичную тему

  • Курсовая работа Измерительные приборы 480 руб.
  • Реферат Измерительные приборы 250 руб.
  • Контрольная работа Измерительные приборы 220 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Штангенциркуль.

Штангенциркуль это самый распространенный инструмент для измерения размеров деталей, полученных в следствии черновой и чистовой обработки. На рис.6. с буквами показан распространенный штангенциркуль или колумбик с двусторонним расположением губок ШЦ-І, при помощи которого измерение наружных поверхностей производится губками А и В, а внутренних – губками C и D.

Рис.6.ШЦ-1, А, В) правильное измерение малого и большого диаметра Б) не правильное измерение большого диаметра

Характеристики штангенциркулей Таблица3.

Предел измерений, мм

Отсчет по нониусу, мм

С двусторонним расположением губок и линейкой глубиномера

0. 125 0. 160 0. 250

С односторонним расположением губок и линейкой глубиномера

С односторонним расположением губок

1. 160 0. 250 0. 400 250. 630 320. 1000 500. 1600 800. 2000

0,5 0,05; 0,01 0,1 0,1 0,1 0,1 0,1

45 60 60 80 80 80 80

Специальные с устройством для разметки

1500. 3000 2000. 4000

Допуск на размер обрабатываемой заготовки, мм

Штангенциркуль с отчетом по нониусу 0,1мм

Штангенциркуль с отчетом по нониусу 0,05мм

Микрометр с ценой деления 0,01мм

Рычажный микрометр с ценой деления 0,002мм

Условия эксплуатации оборудования

Сохранить функциональность приборов позволяет периодическое проведение профилактических работ и проверок их состояния. Наиболее подвержены поломкам измерительные инструменты, имеющие сложные конструктивные особенности.

К каждому прибору прилагается инструкция по эксплуатации, с которой необходимо ознакомиться до начала использования. В инструкции изложены все правила работы, актуальные именно для данной модели.

Автоматические и электронные модели измерительных станков чувствительны к показателям температуры и влажности воздуха. Особо остро на них реагирует оборудование, на котором применяется бесконтактный метод измерений.

Не менее важно обеспечить инструменту достойные условия хранения. Инструменты, изготовленные из дерева и металла, чувствительны к воздействию влаги

А пластик способен деформироваться под прямыми лучами солнца и при воздействии высоких температур. Поэтому все инструменты должны храниться в чехлах или коробах в сухом помещении.

Соблюдение этих правил обеспечит качество и точность измерений, а также поможет продлить срок службы инструментов.

Основные характеристики электроизмерительного прибора

На
панели электроизмерительного прибора
(ЭИП) указывают следующие обозначенияосновных
характеристик
ЭИП:

а)название
прибора
:
амперметры, вольтметры, омметры,
ваттметры, счетчики и др.

б)род
тока
:
приборы постоянного тока, переменного
тока и приборы постоянного и переменного
тока.

в)система
измерительного механизма прибора:

магнитоэлектрическая, электромагнитная,
электродинамическая, индукционная,
тепловая и др.

г)степень
точности
:
различают приборы восьми классов
точности – 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.
Наиболее точными приборами являются
приборы класса точности 0,05 (первого
класса точности). Приборы первых
четырех классов
точности
применяют для
точных
лабораторных измерений
.

Разность
между показанием прибора и действительным
значением измеряемой величины называетсяабсолютной
погрешностью прибора
:

,

(1)

А
– показания рабочего прибора;

Ад
действительное значение величины
(показание образцового прибора).
Выраженное в процентах отношение
абсолютной погрешностью прибора к
наибольшему значению, которое может
быть измерено по шкале этого прибора,
называется относительной
приведенной погрешностью прибора γ
.

,

(2)

Апр
– наибольшее значение величины, которое
может быть измерено данным прибором
(предел
измерения прибора
).

Наибольшую
допустимую относительную приведенную
погрешность прибора называют классом
точности

этого прибора.

Класс
точности прибора наносят на шкалу ЭИП
в виде числа из двух значащих цифр,
иногда обведенных окружностью, иногда
подчеркнутых. Шкала прибора служит для
отсчета значения измеряемой величины.

Делением
шкалы называется расстояние между двумя
ближайшими друг к другу отметками на
шкале.

Ценой
деления
С
называется значение электрической
величины, приходящееся на одно деление
шкалы:

,

(3)

,

(4)

где
изменение
измеряемой величины, а dx,
d


соответственно линейное или угловое
перемещение указателя.

Чувствительностью
прибора

(S)
называется величина, обратная цене
деления шкалы:

.

(5)

Например,
имеется прибор, который может измерить
напряжение от 0 до 250В (250В — предел
измерения). Шкала этого прибора разделена,
на 50 делений. Тогда:

С=250:50=5В/дел,
а S=50:250=0,2
дел/В.

Шкалы
бывают равномерными
и неравномерными
.
На шкале с помощью условных знаков
дается подробная техническая характеристика
прибора.

На
шкале прибора указывают:

1)его
наименование или буквенное обозначение
.

Например,mAилии
т.д. По наименованию единицы измеряемой
величины дается наименование прибора.

2)Класс
точности
.
Класс точности указывают в виде числа
из одной или двух значащих цифр (например
– 0,5 или 2,5).

3)Род
тока

– постоянный /— / или переменный / ~ /,
постоянный и переменный – ~ .

4)Система
измерительного механизма

прибора. Она обозначается на шкале
специальным знаком, представляющим
собой схематическое изображение
основного узла, от которого зависит
принцип действия прибора (смотри таблицу
1).

Например:

  • магнитоэлектрическая
    система –
    ,

  • электромагнитная
    система –
    .

5)Символ
установки прибора при измерениях
:

  1. горизонтальное
    – →, ┌┐

  2. или
    под углом –

6)Пробивное
напряжение изоляции
.
На шкале указана величина напряжения,
при котором была испытана прочность
изоляции, обозначается она так:

7)Степень
защищённости от внешних магнитных
полей
.

Степень
защищенности от внешних магнитных полей
обозначают римскими цифрами I,
II,
III,
IV.
Меньшая цифра означает лучшую защиту.

8)Условия
работы прибора при соответствующей
температуре и относительной влажности
обозначаются
на шкале буквами:

  1. А
    – нормально, работает при –10 до +35С° и
    ƒ до 80%,

  2. Б
    – Т от –20 до +50С° и ƒ до 80%,

  3. В
    – Т от –40 до +60 С° ƒдо
    98%.

9)Абсолютная
погрешность прибора

Абсолютная
погрешность, которую дает измерительный
прибор при измерениях величины U,
рассчитывается по формуле:

.

(6)

10)
На шкалу прибора наносят также марку
завода-изготовителя, заводской номер,
год выпуска и тип прибора
.

Обозначения
основных систем измерительных механизмов
электроизмерительных приборов приведены
в таблице 1.Таблица 1.

Дополнительные устройства

Чтобы определить шаг резьбы, специалисты советуют использовать набор резьбомеров. Предварительно потребуется подобрать профиль гребенки к углу профиля резьбы. При необходимости дополнительно замеривают наружный диаметр изделия. Для этого используют штангенциркуль. Если полученные данные совпадают, тогда число ниток либо шаг определены правильно. Чтобы произвести точные измерения, применяют инструментальный микроскоп.

Для проведения сверхточных измерений рекомендуется использовать рулетку. Лазерный измерительный инструмент обладает следующими преимуществами:

  • функциональность (расчет площади помещения, наличие встроенного калькулятора, память измерений);
  • надежность;
  • ремонт;
  • высокая точность измерения (1,5-2 мм);
  • измерение большого расстояния (до 200 м).

Лазерная рулетка укомплектовывается оптическим либо цифровым визиром, уровнем и уклономером. Для проведения измерительных работ специалисты рекомендуют применять только исправные устройства. При необходимости контролер измерительных приборов и специального инструмента произведет калибровку и проверит технологическое оснащение средств измерения. Специалисты выделяют следующие методы поверки инструментов для разметки:

  • без применения средств сравнения;
  • сличение используемого агрегата с образцовым аналогом при помощи компаратора;
  • прямое и косвенное измерение.

Первичная поверка проводится после производства и ремонта устройства.

Каждый эксплуатируемый инструмент проходит периодическую поверку.

Для подтверждения пригодности средства проводится внеочередная поверка.

При необходимости производится ремонт измерительного инструмента. Для контроля средства измерения на предмет его пригодности к использованию в мировой практике применяют калибровку. В специальной лаборатории проводится калибровка измерительных приборов с целью определения и подтверждения их характеристик и функций. Полученный результат удостоверяют соответствующим знаком (его наносят на измерительный прибор) либо сертификатом и записью в эксплуатационной документации.

НИИ Измерения

Научно-исследовательский и конструкторский институт средств измерения в машиностроении был открыт в 1935 году, он выполняет функции базового института по средствам контроля и измерения, является главной организацией по метрологии и стандартизации размерных параметров в машиностроении.

Данный институт разработал множество измерительных приборов, устройств контроля. Данные разработки применяются на сотнях предприятий станкостроения, нефтяном и газовом машиностроении, авиационном и железнодорожном машиностроении и т.д.

В настоящее время НИИ Измерения по-прежнему сохраняют за собой позицию лидера производителя измерительных приборов в России.

В последнее время спрос на измерительную продукцию вырос, так как наметился рост производства в машиностроении, это привело к реорганизации и укреплению собственного опытного производства, это позволило НИИ Измерения выпускать собственные приборы небольшими сериями.

Однако если требуется изготовление более крупных партий, то НИИ Измерения привлекают к совместной работе заводы.

Как того и требуется в НИИ Измерении работают высококвалифицированные инженерные, конструкторские и рабочие кадры. Достаточно широкая научная база позволяет создавать конкурентоспособные и прогрессивные разработки мирового уровня.

Примеры разработок НИИ Инструментов:

  1. Приборы и инструменты с цифровым электронным отсчетом
  2. Уникальные средства контроля прецизионных зубчатых колес и передач
  3. Приборы активного контроля для всех видов финишного оборудования
  4. Комплекс приборов для контроля отвесных деталей колесных пар железнодорожного транспорта
  5. Приборы для контроля резьб и параметров труб
  6. Специализированные приборы для различных отраслей машиностроения

Принципы положенные в основу создания нового поколения измерительных приборов:

  1. Использование перспективной элементной базы для автоматической обработки результатов контроля
  2. Цифровое представление измерительной информации
  3. Возможность передачи информации на внешние устройства обработки, управления и регистрации
  4. Паспортизация результатов измерения
  5. Возможность встройки в автоматизированные технологические комплексы.

Большое внимание уделяется проблеме метрологического обеспечения производства отвесных резьбовых деталей, особенно в нефтегазовом комплексе

Инструменты для конкретных измерительных задач

Подобрали несколько типов , предназначенных для конкретных измерительных задач.

Клинок

Наковальня и шпиндель микрометров фигурой лезвия, позволяет измерять труднодоступные размеры, такие как диаметр узкой внешней канавки.

Позволяет измерять труднодоступные размеры

Дисковый (вращающийся)

Измерительные поверхности дисковых микрометров выглядят в форме диска, то что дает измерять скрытые элементы, такие как зубья шестерни.

Этот инструмент подходит для измерения и показания длины касательно корней цилиндрических и винтовых зубчатых колес.

Дает возможность измерять скрытые элементы, такие как зубья шестерни

Трубный

Трубные нужны с целью замера толщины стенок труб.

Измерительная плоскость наковальни сферически изогнута, а не плоская, что позволяет осуществлять точечный контакт с измеряемым предметом.

Также доступен инструмент со сферическими наковальнями и измерительными поверхностями шпинделя.

Трубные измеряют толщину стенок труб

С винтовой резьбой

Микрометрическая головка с винтовой резьбой используются для замера диаметра шага винта.

Заостренный шпиндель и двойная наковальня предназначены для контакта с резьбой винта.

Используются для измерения диаметра шага винта

V-образной наковальней

Микрометры с V-образной наковальней полезны для замера наружного диаметра режущих головок с помощью трех канавок, таких как спиральные сверла или развертки.

Для замера наружного диаметра режущих головок

Для листового металла

Горловина делает инструмент идеальным для измерения толщины большого куска листового металла от края.

Для измерения толщины листового металла

Для измерения бумаги

Инструмент для измерения бумаги представляет собой дисковый вид не вращающегося типа, предназначенный для точного измерения толщины бумажного, картонного, резинового или пластикового листа.

Также включает в себя диски и шпиндель который не вращается. Это снижает риск сжатия измеряемого предмета.

Для измерения толщины бумажного, картонного, резинового или пластикового листа

Методика поверки и условия эксплуатации измерительных головок

Средний срок службы приборов данного типа — 6 лет. Условия эксплуатации измерительных головок первого класса точности:

  • температура — от -20 до +35 оС;
  • влажность — до 80 %;
  • присутствие агрессивных газов не допускается.

Не разрешается нанесение масла или эмульсии на поверхность прибора. При снижении плавности хода допускается частичная промывка механизма без его разборки. Для этого с прибора снимается крышка, после чего он помещается в авиационный бензин. В процессе промывки не допускается его попадание на шкалу индикатора.

Поверка прибора производится в соответствии с методикой МИ 2192-92. Межповерочный интервал составляет 1 год.

Измерительный инструмент – 155 фото современных строительных измерительных приборов

Случаев, когда требуется точное измерение – бесконечное количество. Это может быть процесс производства, возведение строительных конструкций или систем водоснабжения и вентиляции, планирование, сборка и многое другое. К каждому объекту применяются нормы качества и соответствия, что контролируется посредством контрольно-измерительных инструментов.

В наше время их применение давно вышло за пределы строительных площадок и производственных зданий, приобрести специализированный прибор может любой желающий. Далее разберем, какая сфера деятельности требует тот или иной прибор.

Строительные работы

Каталог измерительных приборов предлагает бесчисленное множество различных вспомогательных устройств для строительства и ремонта.

Крупное строительство и проектирование требует соответствия общепринятым стандартам и нормам, исполнение которых контролируют специально предназначенные органы надзора. Следовательно, при возведении построек необходимо использовать приемы, обеспечивающие выполнение ГОСТов.

Виды измерительных инструментов

Уровень строительный представляет собой полую линейку с встроенной колбой с жидкостью и пузырьком воздуха, по перемещениям которого видно изменение положения линейки относительно земли. Он незаменим при выравнивании плоскостей пола, стен, потолка, а также при разметке.

Нивелир – оптический либо лазерный инструмент, создающий проекцию плоскостей в вертикали или горизонтали. Применяется не только в крупном строительстве, но и в бытовом ремонте, например при обшивке стен гипсокартоном или при выравнивании потолка.

Угломер – прибор из соединенных линеек, измеряющий угол между ними.

Уклономер – тоже линейка, совмещенная с пузырьковым уровнем и датчиками, замеряющими степень наклона. Применяется в строительстве, ремонте, дорожных работах.

  1. Теодолит выглядит как своеобразная увеличительная труба со шкалой, которая показывает угол в градусах, также применяется при строительстве.

Дальномер лазерный – современный аналог старой проверенной рулетке. Функция у него та же самая – измерение расстояния, осуществляется она путем проекции луча, длина которого до отражающего объекта фиксируется прибором.

Наиболее выгодное свойство такого измерителя – дальность до 250 метров и отсутствие необходимости в помощнике, который будет держать ленту.

Склерометр. Измеряет не габариты, а плотность. Его импульсное воздействие позволяет определить прочность железобетонной конструкции путем измерения прибором дальности отскока измерительного бойка от материала.

Курвиметр – некое колесо, закрепленное на рукояти, при его проходе по земле фиксируется расстояние, записываемое электроникой. Пригодится при ландшафтных и дорожных работах.

  1. Чтобы лучше составить впечатление о внешних отличиях таких устройств, можно посмотреть фото измерительного прибора.

Наука и производство

Применение измерительного инструмента необходимо во всех областях. При создании и испытании деталей ошибок быть не должно, это может повлечь очень серьезные последствия. При контроле качества продукции используются различные штангенциркули для замера диаметров, длин, глубин объекта и микрометры – для проверки габаритных размеров.

В покрасочных цехах также необходим такой прибор как толщинометр, путем электромагнитного воздействия, устройство выясняет толщину покрытия до металлического основания.

Проверка условий

К некоторым помещениям как при постройке так и при эксплуатации применяются особые условия, требующие проверки на специальном оборудовании. Специальные организации, проводящие оценку условий работы используют:

  • Люксметр (проверка освещения);
  • Шумометр (уровень звука);
  • Пирометр (температурный режим);
  • Анемометр (вентиляция).

После проверки результаты сравнивают с допустимыми нормами. Определенные службы также применяют детекторы утечек газа, электропроводки, тепловизоры.

Рекомендации

  • Для получения наиболее точных данных необходимо помнить, что даже самый универсальный мерительный инструмент имеет свои характеристики:
  • Погрешность рассчитывается в процентах либо в цифровом отклонении, наиболее точны электронные устройства.

Диапазон – предел, который можно охватить применяя данный инструмент, лазерные электронные приборы, как правило, имеют наилучший показатель.

  1. Рабочая температура наиболее важна для устройств с батарейками или аккумулятором для его нормальной работы.

Наиболее точными и удобными являются электронные приборы, оснащенные табло и запоминающим устройством. Однако, если измеритель приобретается для бытового пользования, можно вполне выбрать более простой экономичный вариант, этого вполне хватит.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector