Обзор двигателей змз: технические характеристики, плюсы и минусы

Тип бензиновой системы впуска

Существует 2 разновидности топливных бензиновых систем: карбюраторная, инжекторная. Они отличаются конструктивным устройством, а также принципами подачи топлива в цилиндры:

  • Карбюратор вливает бензин сплошным потоком, что затрудняет его смешивание с воздухом и детонацию. Это приводит к увеличенному расходу топлива, снижению технических характеристик мотора;
  • Инжекторная система превращает топливо в мелкодисперсную субстанцию – распыляет его. Это дает ему возможность быстро смешиваться с воздухом внутри цилиндра и приводит к увеличению характеристик двигателя и уменьшению расхода топлива.

Термодинамика классического поршневого ДВС

Тепловой расчёт ДВС был впервые разработан русским профессором Гриневецким, директором Императорского Московского технического училища. Его жизнь в 1919-м оборвала Гражданская война. В нашей стране его продолжателем явились такие русские инженеры как Брилинг, Мазинг и Сикорский (последний эмигрировал).

Первым и главнейшим в расчёте каждого поршневого ДВС является его рабочий объём.

Vh=i∗π∗D24{\displaystyle V_{h}=i*\pi *D^{2}/4}, где i и D — диаметр и число цилиндров.

Одним из главных показателей цикла ДВС служит индикаторный КПД, зависящий от степени сжатия и показателя политропы рабочего тела.

Вторым важным уравнением является связь индикаторной мощности с рабочим объёмом двигателя, числом оборотов и степенью форсировки (приведённым индикаторным давлением).

Индикаторный КПД двигателя вычисляется на основании данных индикаторной мощности, расхода топлива, и его теплотворной способности.

Эффективная мощность и эффективное индикаторное давление отличаются от индикаторных на величину механических потерь, выраженных через механический КПД.

Механические потери включают в себя как трение цилиндро-поршневой группы и механизма газораспределения, так и потери в навесных агрегатах (помпа, маслонасос, генератор) и потери в процессе газообмена (отрицательная петля работы в индикаторной диаграмме 4-тактного ДВС).

Термодинамические показатели в целом не связаны с устройством конкретного двигателя, но соответствующие коэффициенты в формулах, обусловленные механическими потерями, максимальной степенью сжатия и плотностью воздуха на впуске, определены конструкцией. Термодинамические показатели влияют не только на КПД и мощность, но и экологические показатели двигателя.

Технические характеристики двигателей Volkswagen

Стандартный двигатель Volkswagen — четырёхцилиндровый агрегат с верхним расположением распределительного вала и водяным охлаждением. Обычно блок цилиндров, его головка и поршни выполнены из алюминиевого сплава, а коленчатый вал с тремя опорными подшипниками — из кузнечной штампованной стали.

Двигатели Volkswagen имеют следующие технические характеристики:

  • потребляемое топливо — бензин или дизтопливо;
  • система охлаждения — воздушная или жидкостная;
  • тип расположения цилиндров — рядный, V-образный или VR;
  • объём — от 1 до 5 л;
  • мощность — от 25 до 420 л. с.;
  • расход топлива — от 3 до 10 л на 100 км пробега;
  • количество цилиндров — от 3 до 10;
  • диаметр поршней — до 81 мм;
  • число рабочих тактов — 2 или 4;
  • тип воспламенения смеси — искровое зажигание или воспламенение от сжатия;
  • количество распределительных валов — 1, 2 или 4;
  • количество клапанов в камере сгорания — 2 или 4.

Идеальным сочетанием производительности и экономии стали бензиновые двигатели TSI. Даже при низких скоростях они показывают максимальный крутящий момент, а тщательно выверенная комбинация перемещения поршня, турбонаддува и прямого впрыска обеспечивает равномерную подачу топлива.

Для бензиновых двигателей Volkswagen характерно:

  • формирование топливной смеси во впускном коллекторе или непосредственно в камере сгорания;
  • воспламенение смеси от свечей зажигания;
  • равномерность горения смеси;
  • количественная регулировка смеси;
  • четырёхтактный принцип работы при двух оборотах коленчатого вала с углом 720°.

Дизели Volkswagen TDI с турбонаддувом и прямым впрыском топлива характеризуются:

  • экономичностью;
  • высокой тяговой мощностью;
  • производительностью;
  • надёжностью в эксплуатации.

Материал, из которого изготовлено устройство внутреннего сгорания

Существует как минимум три вида материалов, из которых изготавливаются силовые агрегаты :

  1. Чугун. Чугунные двигатели отличаются высокой прочностью и надежность, а также гарантируют долгий срок эксплуатации. Но, так же как и все чугунные изделия, мотор из данного материала имеет слишком большой вес, который ухудшает управляемость автомобиля.
  2. Алюминий, в отличие от чугуна, занимает не так много места и имеет небольшой вес, однако обеспечивает меньшую прочность, которая не так надежно проявляет себя в повседневной жизни.
  3. Магниевые сплавы. Такой материал в большинстве случаев используют на внедорожниках и автомобилях бизнес-класса. Такая выборочная установка объясняется легко: высокий уровень прочности и небольшой вес реализуется на мировом рынке за слишком высокую стоимость, и ее установка на обычные малолитражки будет экономически не выгодна.

В процессе эксплуатации транспортного средства для водителя находятся приоритетные характеристики, на которые впоследствии он и будет обращать внимание. К ним относятся выходные характеристики силового агрегата:

Объем двигателя

Рабочий объем ДВС определяет его мощность. Этот параметр измеряется в см3, но чаще в литрах. Он определяется путем суммирования внутреннего объема всех цилиндров силового агрегата. За основу в вычислениях берется поперечное сечение цилиндра и умножается на длину хода по нему поршня. В результате получается рабочий объем. Параметр также определяет во многих странах мира сумму сборов. Соответственно чем больше объем, тем мощнее двигатель, а значит, его владелец заплатит больший взнос. Перспективным направлением разработок современности являются ДВС с изменяемым объемом. Это технология, когда при определенных условиях цилиндры отключаются.

Основные типы двигателей

Применяемые на автомобилях двигатели подразделяются на типы по различным признакам

У четырехтактных двигателей полный рабочий процесс (цикл) совершается за четыре такта (впуск, сжатие, рабочий ход, выпуск), которые последовательно повторяются при работе двигателей. Рядные двигатели имеют цилиндры, расположенные в один ряд вертикально или под углом 20…40° к вертикали. V-образные двигатели имеют два ряда цилиндров, расположенных под углами 60, 75° и чаще 90е. V-образный двигатель с углом 180° между рядами цилиндров называется оппозитным. Двух-, трех-, четырех- и пятицилиндровые двигатели выполняются обычно рядными, а шести-, восьми- и многоцилиндровые — V-образными. В двигателях с жидкостным охлаждением в качестве охлаждающего вещества используют антифризы (низкозамерзающие жидкости), температура замерзания которых -40 °С и ниже. В двигателях с воздушным охлаждением охлаждающим веществом является воздух. Большинство двигателей имеет жидкостное охлаждение, так как оно наиболее эффективное.

Причины износа поршней двигателя

Трещины на головках поршней и на поршневых кольцах из-за термического износа являются обычной проблемой. Развитие автомобильной промышленности в последние годы привело к тому, что эффективность поршней и поршневых колец в двигателях внутреннего сгорания зависит в первую очередь от долговечности используемых материалов. Условия эксплуатации привода также являются важным фактором. Вероятность отказа двигателя увеличивается с усилением тепловых нагрузок, связанных с ростом производительности (например, за счет увеличения степени сжатия, номинальной мощности, наддува или из-за использования более двух клапанов на цилиндр).

Конструкционные и эксплуатационные факторы влияют на деградацию материала, используемого в поршнях. В зависимости от перечисленных факторов можно указать следующие виды износа:

  • износ из-за трения,
  • износ, вызванный повреждением материала (действие переменных механических и термических нагрузок),
  • процесс коррозии (изменение физико-химических свойств верхнего слоя материала),
  • эрозионный (в результате динамического воздействия газообразной или жидкой среды).

Очень часто трещины вызывают зазубрины, образованные краями углублений клапана. Такие повреждения могут привести, в частности, к нарушениям в процессе горения топливно-газовой смеси или к снижению герметичности камеры.

В двигателях с форкамерным впрыском наиболее распространенным дефектом является растрескивание головки поршня.

Температура на краю поршня в зоне камеры сгорания может быть чуть более 380°C . В случае контакта с жидкостью создаются экстремальные условия, которые могут вызвать трещины или необратимую деформацию поршня. Такое повреждение днища может быть причиной, например, попадания воды или топлива в камеру сгорания.

Еще одна причина повреждения поршня — его тепловая перегрузка. Она может произойти, если масло меняют слишком редко (в автомобилях с двигателем с воспламенением от сжатия его следует менять примерно раз в год; в автомобилях с двигателем с искровым зажиганием — примерно каждые 1,5 года). Это также может привести к засорению форсунок охлаждения моторного масла.

От 40 до 50% механических потерь в двигателе внутреннего сгорания — это потери из-за трения колец и поршня о поверхность подшипника цилиндра. По этой причине размеры поверхности трения колец уменьшаются (при неизменном давлении). Это приводит к снижению эластичности поршневых колец, что может вызвать разрушение из-за тяжелых условий эксплуатации. Растрескивание поршневых колец также может быть следствием:

  • трибологического износа;
  • механических перегрузок, которые возникают из-за нарушения процесса сгорания, ошибок сборки или из-за больших нагрузок при запуске холодного двигателя.

Трибологический износ — это вид износа, возникающий в результате процессов трения. Процессы изнашивания изменяют массу, структуру и физические свойства поверхностных слоев контактных площадок. Интенсивность износа является следствием различных взаимодействий и сопротивления участков трения поверхностных слоев.

Еще одна причина повреждения — захват. Он появляется на юбке поршня и вокруг колец. Частые причины этого явления — частицы от процессов трибологического износа или локального перегрева. Алюминиевый сплав поршня термически расширяется вдвое больше, чем чугун в цилиндре.

Основными параметрами двигателя внутреннего сгорания являются:

  • объем хода — это разность между верхним и нижним возвратным положением поршня в цилиндре;
  • объем камеры сгорания — это объем над головкой поршня, когда он находится в верхнем убираемом положении;
  • общий объем двигателя — это сумма объема цилиндра и объема камеры сгорания;
  • степень сжатия — это общий объем, деленный на объем камеры сгорания.

Поршень является одной из важнейших частей двигателя, в случае возникновения неисправностей необходимо сразу провести диагностику. Промедление может провести к дорогому ремонту или вообще полной замене двигателя.

Компрессор

Данный механизм создан для сжимания топлива, т.е. впускной смеси. Компрессоры могут быть механическими и турбонаддувными. Механический компрессор работает за счет коленчатого вала двигателя. Недостаток данной системы в том, что он приводит к значительной потере мощности и увеличению потребляемого топлива. Турбонаддувные компрессоры оснащены крыльчаткой турбины, раскручивающейся от давления выхлопных газов. Турбонаддувные механизмы более экономичны, они не затрачивают большого количества впускной смеси, но на малых оборотах уменьшают крутящий момент.

Для улучшения мощностных характеристик двигателей некоторых автомобилей, производители устанавливают несколько устройств. Последовательно установленные компрессоры обеспечивают бесперебойность в работе мотора, параллельно установленные компрессоры увеличивают характеристики автомобиля в пиковых режимах.

Отличительные особенности двигателя ваз 2106

Двигатель ваз 2106 – это достаточно успешная доработка предыдущей версии мотора ВАЗ-2103, во время создания которого использовались современные технологии.

Производители поставили перед собой задачу любыми способами усовершенствовать уже готовую деталь:

Мощность удалось увеличить с помощью общего действующего объема мотора

Особенное внимание уделялось улучшению цилиндра.
Такие доработки повлияли на появление блока цилиндра 2106-1002011. Помимо диаметра представленная конструкция мотора больше не имеет никаких отличительных особенностей.
Во время производственного процесса специалисты дают отдельному цилиндру собственный класс

Сегодня существует около пяти наименований, которые различаются одним миллиметром. Им присваиваются следующие символы – А, В, С, D и Е. Посмотреть условный класс мотора можно внизу основания.
Неизменной оставили основную головку блока мотора с обозначением 21011-1005011-10. Чтобы изменить общий диаметр цилиндра производителям пришлось использовать новые прокладки.
Абсолютно все стандартные и общепринятые поршни имеют много аналогичных характеристик между собой. Представленный двигатель оснащен поршнями от мотора 21011, где номинальный диаметр равен 79 миллиметрам.

В новой модели мотора есть лунки цилиндрической формы, а также в несколько раз улучшены объемы. Во время работы в каждой отдельной области абсолютно все поршни будут нагреваться постепенно и равномерно. Именно таким образом удалось компенсировать возможные тепловые деформации. Также производители расположили терморегулирующие пластины из высококачественной стали в бобышках поршня.

Как увеличить мощность двигателя ваз 2106 и максимально снизить всевозможные динамические нагрузки на поршневую часть мотора? Нужно обратить внимание на наличие отверстия, которое предназначено только для поршневых пальцев

Обслуживание и ремонт

Обслуживание мотора А01 — достаточно простое. Можно сказать, оно аналогичное всем дизельным силовым агрегатам, типа ЯМЗ. Техническое обслуживание проводится каждые 12-15 тыс. км пробега. В этот показатель входит смена моторного масла и фильтрующего элемента. Также, рекомендуется проверять зажигание и состояние воздушного фильтра. Не стоит забывать, что смена воздушного элемента проводится каждое второе техническое обслуживание.

Двигатель особо не прихотлив в использовании топлива и моторного масла. Так, для нормальной эксплуатации подойдёт любое более-менее качественная минеральная смазки. Как показывает практика, обычно автомобилисты льют в мотор такое масло, как М10. Оно прекрасно выполняет все необходимые функции, а также при своевременной замене хорошо защищает элементы мотора

Особое внимание рекомендуется уделить воздушному фильтру. Лучше всего брать качественное изделие с металлическим основанием

Toyota 2.0/2.2 D-4 D

Краткое описание:

— 4-цилиндровый

— 16-клапанный

— система питания Common Rail

— турбонаддув

— для легковых автомобилей компактного и среднего класса и SUV

Наибольшее распространение двигатели серии AD получили в Avensis II после рестайлинга. Чтобы не было никакой путаницы, уточняем: до рестайлинга в 2003-2006 гг. в Авенсис второго поколения использовался дизель 2.0D-4D серии 1CD-TV, а после рестайлинга в 2006-2008 гг. серии 1AD/2AD-FTV.

Тойота разрабатывала дизельные двигатели серии AD полностью с нуля. Алюминиевый блок получил чугунные гильзы цилиндров, а в системе питания Common Rail использовались форсунки DENSO, несомненное преимущество которых – высокая надежность. Ресурс форсунок — 250 тыс. км не предел, а в случае необходимости они поддаются восстановлению. К сожалению, стоимость новой форсунки 18-19 тыс. рублей, что существенно превышает стоимость популярной европейской Bosch – около 12 тыс. рублей. В двигателях последнего поколения уже используются пьезоэлектрические форсунки, восстановление которых невозможно.

С 2008 года все двигатели серии AD оснащаются фильтром твердых частиц, а 2,2-литровый версии D-CAT с самого начала получил DPF-фильтр в качестве стандартного оборудования с расширенной системой очистки DPNR. Кстати, мотор 2.2 D-CAT стал единственным дизельным двигателем, попавшим в линейку силовых агрегатов Lexus.

К сожалению, значительное число двигателей серии AD, собранных до 2009 года пострадали, от производственного дефекта — эрозия блока двигателя на стыке с ГБЦ. Производитель отозвал большое число двигателей по гарантии. В настоящее время данной проблемы не существует.

Эксплуатация и типичные неисправности

Конструктивный дефект двигателя серии AD сильно подорвал репутацию Тойоты – новый Avensis II пользовался на рынке меньшим спросом, чем первое поколение, а версий D-CAT клиенты избегали, опасаясь высокой стоимости обслуживания.

Эрозия блока двигателя

Со временем на стыке алюминиевого блока и алюминиевой головки блока цилиндров появляются микрополости. Охлаждающая жидкость начинает попадать в масло. Ремонт требует снятия головы, замены прокладки и шлифовки блока, с целью избавления от полостей. Такую процедуру можно провести всего один раз, так как после  повторного шлифования существует риск удара поршня по клапанам. Дефект проявляется после 100-180 тыс. км, в зависимости от условий эксплуатации. Во многих автомобилях (в основном Авенсис второго поколения) двигатель был отремонтирован или заменен по гарантии. Вероятно, одна из причин появления проблемы – реакция металла на взаимодействие с охлаждающей жидкость. Если на проблемный автомобиль гарантия не распространяется, тогда для ремонта необходимо подготовить около 60-70 тыс. рублей.

Сажа в двигателе

К сожалению, моторы серии AD склонны постепенно накапливать большое количество сажи во впускном коллекторе, а затем и в камере сгорания. Проблема решается с помощью очистки специальными жидкостями.

Низкий ресурс двойного маховика

Чем сильнее двигатель, тем большую нагрузку испытывает двухмассовый маховик. Для двигателя 2AD его стоимость составляет до 40 000 рублей!

Технические характеристики Toyota 2.0/2.2 D-4 D

Версия

1AD-FTV — 124

1AD-FTV — 126

2AD-FTV — 136

2AD-FTV — 150

2AD-FTV — 177

Система впрыска

Common Rail

Common Rail

Common Rail

Common Rail

Common Rail

Рабочий объем

1995 см3

1995 см3

2231 см3

2231 см3

2231 см3

Расположение цилиндров /

количество клапанов

R4/16

R4/16

R4/16

R4/16

R4/16

Мощность

124 л,с./4000

126 л.с./4000

136 л.с./4000

150 л.с./4000

177 л.с./4000

Макс.  крутящий момент 

310 Нм /   1600-2400

300 Нм /   1800-2400

310 Нм /   2000-2800

310 Нм /   2000-3200

400 Нм /   2000-2600

Привод ГРМ

цепь

цепь

цепь

цепь

цепь

Применение двигателя 2.0 D-4 D 1 AD/2 AD

Этот двигатель используется и по сей день, но за время своего существования претерпел несколько изменений. В линейке силовых агрегатов текущей Toyota Corolla (Е18) этот двигатель отсутствует.

Lexus IS220d: 05.2010-03.2013

Toyota Auris I: с 10.2006

Toyota Avensis II: 10.2005-11.2008

Toyota Avensis III: с 02.2009

Toyota Corolla: с 10.2006

Toyota RAV4 III: с 11.2005

Toyota RAV4 IV: с 12.2012

Toyota Verso/Corolla Verso: с 10.2005

Оценка: ☆☆

Сложно считать этот двигатель успешным. Погоня за современными технологиями и снижение издержек при производстве привели к созданию несовершенной конструкции. Раскрывшийся конструктивный дефект имеет действительно большие масштабы и не допустим в современных двигателях. Утешением послужит тот факт, что в 2009 году проблема была решена, и дизель серии AD стал не опасен.

Альтернатива

Чуть более прожорливый бензиновый 1,8-литровый двигатель позволит сохранить душевное спокойствие.

Двигатель ГАЗ 53 технические характеристики

При расчёте силовой установки, за основу взят мотор ГАЗ-51. В процессе работы над агрегатом, конструкция и элементы двигателя постоянно дорабатывались и улучшались, что привело к созданию модификаций, значения показателей которых имели характерные отличия

Важно, что базовые элементы оставались постоянными на протяжении периода выпуска изделия

Технические показатели ГАЗ-53:

Показатель: Значение:
Выпуск мотора 1964-1993
Сырьё мотора алюминий
Питание мотора Карбюратор, бензин А-76 (80)
Охлаждение мотора Жидкость, замкнутый контур с вентиляцией
Число и расположение камер мотора Восемь, «V»
Порядок работы камер мотора «15426378»
Перепускных вентилей на камеру, (шт.) 2
Сечение камеры мотора, (мм.) 92
Перемещение вытеснителя мотора, (мм.) 80
Компрессия мотора 6,7
Объём двигателя, (л) 4,250
Мощь мотора, (лошадей, об/мин) 115/3200
Импульс мотора, (Нм./оборотов в минуту) 284,5/2000
Вес двигателя ГАЗ 53 без коробки, (кг.) 265
Расход мотора, (л/сотню км.) 24
Смазка мотора Давление + брызги + пар
Масло мотора, марка М-10В-1
Утрата масла на 100км пути, (л) Менее 0,4
Объём масла в двигателе ГАЗ 53, (л.) 8
Смена смазки в моторе, (км.) 7000-10000
Работа мотора при температуре, (°С) 91
Карбюратор мотора, модель К-126Б
Напряжение сети, (В) 12
Аккумулятор мотора, модель 6СТ-75
Прерыватель мотора ДК 53
Катушка мотора Б114Б (115)
Свечи мотора А11 (14)
Генерирующее устройство мотора Г250Г1(3)
Стартер мотора СТ230А1

Вес двигателя ГАЗ 53 варьируется и связан с рядом факторов. Так, тяговая установка с заполненным смазкой контуром весит больше. Часто, применяя демонтаж, устройство снимают совместно с коробкой передач, в этом случае к весу коробки приплюсовывается вес трансмиссии. Учитывая выше сказанное, показатель колеблется в диапазоне 245-300кг.

Компрессор

Главная функция компрессора – повышение мощности ДВС без увеличения его размеров. Это делается с помощью нагнетания в камеру сгорания большего объема воздуха, что позволяет делать взрыв топливной смеси более мощным. Устанавливается компрессор на впускную систему автомобиля. Компрессор приводится в движение механическим способом через соединение с коленвалом. Это делается посредством ремня или цепи. Турбокомпрессор нагнетает воздух под действием потока газов, которые крутят турбину, отвечающую за подачу дополнительной порции атмосферной массы. Компрессоры по принципу подачи воздуха делятся на:

  • Центробежные – простая конструкция, где нагнетателем является крыльчатка;
  • Роторные – воздух нагнетается кулачковыми валами;
  • Двухвинтовые – функции нагнетателей выполняют винты, расположенные параллельно друг другу.

Типовые параметры работы двигателей

Существует разделение ДВС на такие типы:

  • Бензиновые – часто используются в гражданском автомобилестроении, наиболее распространенный тип;
  • Дизельные – эти агрегаты отличаются надежностью и экономичностью. При этом несколько уступают бензиновым аналогам в динамике (набор скорости), но выигрывают по показателям проходимости. Широко используются военными, распространены в гражданском автомобилестроении;
  • Газовые – используют в качестве топлива сжиженный, природный, сжатый газ, который закачивается в специальные баллоны;

В список можно включить гибридные газодизельные агрегаты и роторно-поршневые. Последний тип широко использовался авиацией до середины XX века, в современных условиях встречается редко.

Двигатель с воспламенением от сжатия

Основная статья: Дизельный двигатель

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый в цилиндре воздух от адиабатического сжатия (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топливной смеси происходит его распыление, а затем вокруг отдельных капель топливной смеси возникают очаги сгорания, по мере впрыскивания топливная смесь сгорает в виде факела. Так как дизельные двигатели не подвержены детонации, в них допустимо использование более высоких степеней сжатия. Повышение её свыше 15 практически роста КПД не даёт, поскольку при этом максимальное давление ограничивают путём более длительного сгорания и уменьшением угла опережения впрыска. Однако малоразмерные быстроходные вихрекамерные дизеля могут иметь степень сжатия до 26, для надёжного воспламенения в условиях большого теплоотвода и для меньшей жёсткости работы (жёсткость обуславливается задержкой воспламенения, характеризуется в повышении давления при сгорании, измеряется в МПа/градус поворота коленчатого вала). Крупногабаритные судовые дизели с наддувом имеют степень сжатия порядка 11..14 и КПД более 50%.

Дизельные двигатели обычно менее быстроходны и при равной мощности с бензиновыми характеризуются большим крутящим моментом на валу. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжёлых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счёт пневматической схемы с запасом сжатого воздуха, либо, в случае с дизель-генераторными установками, от присоединённого электрического генератора, который при запуске выполняет роль стартера.

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера — Сабатэ со смешанным подводом теплоты. Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряжённостью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Газодизельный двигатель

Основная статья: Газодизельный двигатель

Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю. Обычно имеется возможность работы по чисто дизельному циклу. Применение: тяжёлые грузовики. Газодизельные двигатели, как и газовые, дают меньше вредных выбросов, к тому же природный газ дешевле. Такой двигатель зачастую получают дооснащением серийного, при этом экономия дизтоплива (степень замещения газом) составляет порядка 60%. Зарубежные фирмы также активно разрабатывают такие конструкции.

Порядок работы двигателя

Порядком работы двигателя называется последовательность чередования рабочих ходов по цилиндрам двигателя. Для равномерной и плавной работы двигателя рабочие ходы и другие одноименные такты должны чередоваться в определенной последовательности в его цилиндрах. При этом чередование должно происходить через равные углы поворота коленчатого вала двигателя, величина которых зависит от числа цилиндров двигателя. В четырехтактном двигателе рабочий процесс совершается за два оборота коленчатого вала, т.е. за поворот вала на 720°. Число рабочих ходов равно числу цилиндров двигателя. Их чередование для четырех-, шести- и восьмицилиндровых двигателей будет происходить соответственно через 180, 120 и 90° поворота коленчатого вала.

Порядок работы двигателя во многом зависит от типа двигателя и числа цилиндров. Так, например, у коленчатого вала рядного четырехцилиндрового двигателя, 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector